纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20210908508
• 纤维材料 • 下一篇
李亮1, 裴斐斐2, 刘淑萍3, 田苏杰4, 许梦媛3, 刘让同3(), 海军1
LI Liang1, PEI Feifei2, LIU Shuping3, TIAN Sujie4, XU Mengyuan3, LIU Rangtong3(), HAI Jun1
摘要:
为构筑可自降解、抗菌消炎且轻薄柔软有助于伤口愈合的医用敷料,以聚乳酸为原料,通过掺杂不同质量分数的阿莫西林,采用静电纺丝技术制备聚乳酸纳米纤维基载药敷料。借助扫描电子显微镜、红外光谱仪、X射线衍射仪、接触角测试仪、紫外分光光度计等手段分析纳米纤维膜的微观结构、润湿性能、药物缓释、抗菌性能以及自降解性能。结果表明:聚乳酸纳米纤维敷料具有多孔结构,敷料纤维直径随载药量增加而降低,敷料载药量3%时,纤维平均直径达684 nm;载药聚乳酸纳米纤维基敷料中阿莫西林与聚乳酸没有发生化学反应,避免了阿莫西林的负面改性;聚乳酸纳米纤维基载药敷料润湿性与抗菌性能随载药量增加而增加,载药3%敷料的接触角降到110°,提高了润湿性,对金黄色葡萄球菌的抑菌率可达91%。聚乳酸纳米纤维载药敷料具有较好的自降解性能和平缓的药物缓释能力,适合用作伤口敷料。
中图分类号:
[1] |
林建云, 罗时荷, 杨崇岭, 等. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
doi: 10.7536/PC200437 |
LIN Jianyun, LUO Shihe, YANG Chongling, et al. Bio-based polymeric hemostatic material and wound dressing[J]. Progress in Chemistry, 2021, 33(4): 581-595.
doi: 10.7536/PC200437 |
|
[2] |
QING Xiaoyan, HE Guanghua, LIU Zhongda, et al. Preparation and properties of polyvinyl alcohol/N-succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing[J]. Carbohydrate Polymers, 2021.DOI: 10.1016/j.carbpol.2021.117875.
doi: 10.1016/j.carbpol.2021.117875 |
[3] | HARRIOTT MELPHINE M, BHINDI N, KASSIS S, et al. Comparative antimicrobial activity of commercial wound care solutions on bacterial and fungal biofilms[J]. Annals of Plastic Surgery, 2019, 84(4):404-410. |
[4] | 谢海霞, 沈先荣, 葛卫红, 等. 胶原蛋白-壳聚糖-海藻酸盐复合敷料的促愈合作用[J]. 药物生物技术, 2016, 23(6):495-502. |
XIE Haixia, SHEN Xianrong, GE Weihong, et al. The promoting effect of collagen-chitosan-alginate composition dressing on wound healing of rat[J]. Pharmaceutical Biotechnology, 2016, 23(6):495-502. | |
[5] | 崔智慧, 张雅菲, 田田, 等. 国产氧化纤维素可吸收止血纱布对大鼠皮肤伤口愈合影响的机制研究[J]. 河北医科大学学报, 2019, 40(10):1193-1196. |
CUI Zhihui, ZHANG Yafei, TIAN Tian, et al. A mechanism study about the effect of oxidized cellulose absorbable hemostatic gauze on skin wound healing in rats[J]. Journal of Hebei Medical University, 2019, 40(10):1193-1196. | |
[6] | 李晶, 薛斌. 新型医用敷料的分类及特点[J]. 中国组织工程研究, 2013, 17(12):2225-2232. |
LI Jing, XUE Bin. Insight into new medical dressings: classification and characteristics[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(12):2225-2232. | |
[7] | 樊梦妮, 陈晓蕾, 陈俊鹏, 等. 水凝胶医用敷料的研究进展[J]. 生物加工过程, 2021, 19(3): 294-305. |
FAN Mengni, CHEN Xiaolei, CHEN Junpeng, et al. Research progress of hydrogel medical dressings[J]. Chinese Journal of Bioprocess Engineering, 2021, 19(3): 294-305. | |
[8] |
CHEN Xiangyan, LI Hongjin, QIAN Xiaoni, et al. Agarose oligosaccharide-silver nanoparticle-antimicrobial peptide-composite for wound dressing[J]. Carbohydrate Polymers, 2021.DOI: 10.1016/j.carbpol.2021.118258.
doi: 10.1016/j.carbpol.2021.118258 |
[9] |
ALEXA-MARIA Croitoru, YASIN Karacelebi, ELIF Saatcioglu, et al. Electrically triggered drug delivery from novel electrospun poly(lactic acid)/graphene oxide/quercetin fibrous scaffolds for wound dressing applications[J]. Pharmaceutics, 2021, 13(7):957.
doi: 10.3390/pharmaceutics13070957 |
[10] | 张慜晨, 高伟成. 创面愈合过程中巨噬细胞调控机制的研究进展[J]. 组织工程与重建外科杂志, 2019, 15(3): 204-207. |
ZHANG Minchen, GAO Weicheng. Research progress of regulation mechanism of macrophages in wound healing[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2019, 15(3):204-207. | |
[11] |
WINTER G D. Formation of the scab and the rate of epithelisation of superficial wounds in the skin of the young domestic pig[J]. Nature, 1962, 193:293-294.
doi: 10.1038/193293a0 |
[12] | 张隐, 潘明珠. PHBV纳米纤维的静电纺丝及在生物医用领域的研究进展[J]. 高分子通报, 2021(1):17-27. |
ZHANG Yin, PAN Mingzhu. Research progress of preparation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers based on electrospinning and its applications in biomedicine fields[J]. Chinese Polymer Bulletin, 2021(1):17-27. | |
[13] |
RHO K S, JEONG L, LEE G, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing[J]. Biomaterials, 2006, 27: 1452-1461.
pmid: 16143390 |
[14] |
SCHNEIDER A, WANG X Y, KAPLAN D L, et al. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing[J]. Acta Biomater, 2009, 5: 2570-2578.
doi: 10.1016/j.actbio.2008.12.013 pmid: 19162575 |
[15] |
MALEKI H, SEMNANI RAHBAR R, NAZIR A. Improvement of physical and mechanical properties of electrospun poly(lactic acid) nanofibrous struc-tures[J]. Iranian Polymer Journal, 2020, 29:841-51.
doi: 10.1007/s13726-020-00844-2 |
[16] |
BI H, FENG T, LI B, et al. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing[J]. Polymers, 2020, 12(4):839.
doi: 10.3390/polym12040839 |
[17] | 吴焕岭. 载药再生细菌纤维素纤维的制备及其表征[J]. 纺织学报, 2017, 38(5): 14-18. |
WU Huanling. Preparation and characterization of drug-loaded regenerated bacterial cellulose fiber[J]. Journal of Textile Research, 2017, 38(5): 14-18. | |
[18] | 唐志敏, 李彦, 王璐. 载有$\widetilde{Ɔ}$-聚赖氨酸的纳米纤维膜的制备及其抗菌性能评价[J]. 东华大学学报(自然科学版), 2021, 47(6): 22-28. |
TANG Zhimin, LI Yan, WANG Lu. Preparation and antibacterial evaluation of nanofiber membrane loaded with $\widetilde{Ɔ}$-polylysine[J]. Journal of Donghua University(Natural Science), 2021, 47 (6): 22-28. | |
[19] |
BRUSINI R, VARNA M, COUVREUR P. Advanced nanomedicines for the treatment of inflammatory diseases[J]. Advanced Drug Delivery Reviews, 2020, 157 :161-178.
doi: 10.1016/j.addr.2020.07.010 pmid: 32697950 |
[20] | 阮绵照. 基质影响聚合物结晶的实验研究[D]. 杭州: 浙江大学, 2006:7-8. |
RUAN Mianzhao. Experimental study on the effect of matrix on polymer crystallization[D]. Hangzhou: Zhejiang University, 2006:7-8. | |
[21] | 李亮, 杨劲草, 胡泽栋, 等. 水解条件对聚乳酸纤维强伸性能的影响[J]. 棉纺织技术, 2019, 49:36-39. |
LI Liang, YANG Jincao, HU Zedong, et al. Influence of hydrolysis condition on strength & elongation of polylactic acid fiber[J] Cotton Textile Technology, 2019, 49:36-39. |
[1] | 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21. |
[2] | 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21. |
[3] | 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202. |
[4] | 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15. |
[5] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[6] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[7] | 程燕婷, 孟家光, 薛涛, 支超. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(09): 115-119. |
[8] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[9] | 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106. |
[10] | 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47. |
[11] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[12] | 刘蛟, 陈韶娟, 吴韶华. 丝素蛋白/聚左旋乳酸纳米纤维纱线肌腱补片的制备及其性能[J]. 纺织学报, 2022, 43(08): 60-66. |
[13] | 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186. |
[14] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
[15] | 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56. |
|