纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 104-112.doi: 10.13475/j.fzxb.20211106809
李宝洁1,2, 朱元昭1,2, 钟毅1,2,3, 徐红1,2,3, 毛志平1,2,3()
LI Baojie1,2, ZHU Yuanzhao1,2, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3()
摘要:
为提高聚对苯二甲酸乙二醇酯(PET)的阻燃性能,以六水合硝酸锌和2-甲基咪唑制备沸石咪唑酯骨架材料(ZIF-8),之后用六氯环三磷腈和4,4 -二羟基二苯砜对ZIF-8进行表面修饰合成一种ZIF-8聚环三磷睛-共磺酰基双酰/(PZS)亚微米颗粒,并与PET通过熔融共混制备PET阻燃复合材料。借助热重分析仪、极限氧指数仪、垂直燃烧仪、万能材料试验机以及扫描电镜等对复合材料的热稳定性、阻燃抗熔滴性、力学性能以及阻燃机制进行分析。结果表明:添加6%的ZIF-8/PZS亚微米颗粒使PET的极限氧指数(LOI值)提高到29.2%,并通过UL-94 V-0等级,而复合材料的力学性能没有受到严重影响;ZIF-8/PZS可以在气相和凝聚相中同时发挥效用,从而赋予PET复合材料优异的阻燃性能。
中图分类号:
[1] |
CHU J, YIN X, HE M, et al. Substance flow analysis and environmental release of antimony in the life cycle of polyethylene terephthalate products[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2020.125252.
doi: 10.1016/j.jclepro.2020.125252 |
[2] |
GARCIA-ESCOBAR F, BONILLA-RIOS J, ESPINOZA-MARTINEZ A B, et al. Halloysite silanization in polyethylene terephthalate composites for bottling and packaging applications[J]. Journal of Materials Science, 2021, 56(29): 16376-16386.
doi: 10.1007/s10853-021-06337-8 |
[3] | 孔抵柱, 李家炜, 徐红, 等. 环三磷腈和三嗪衍生物协同阻燃对聚酯性能的影响[J]. 纺织学报, 2017, 38(7): 11-17. |
KONG Dizhu, LI Jiawei, XU Hong, et al. Synergistic effect between cyclotriphosphazene and triazinederivatives on flame retardancy of poly (ethylene terethalate)[J]. Journal of Textile Research, 2017, 38(7): 11-17. | |
[4] | 孙晨颖, 王文庆, 靳高岭, 等. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(6): 171-179. |
SUN Chenying, WANG Wenqing, JIN Gaoling, et al. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior[J]. Journal of Textile Research, 2021, 42(6): 171-179. | |
[5] | 朱玉玺, 代亚敏, 王畅, 等. PET的含硼阻燃剂和磷腈阻燃剂协同阻燃整理[J]. 印染, 2017, 43(22): 1-7. |
ZHU Yuxi, DAI Yamin, WANG Chang, et al. Synergistic flame-retardant finish of PET with boron-containing compounds and nitrile flame retardant[J]. China Dyeing & Finishing, 2017, 43(22): 1-7. | |
[6] |
ZHU Z M, SHANG K, WANG L X, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167: 179-188.
doi: 10.1016/j.polymdegradstab.2019.07.005 |
[7] |
宋昆朋, 王银杰, 刘吉平, 等. 磷腈化合物在阻燃聚合物领域的研究进展[J]. 中国塑料, 2021, 35(2): 107-118.
doi: 10.19491/j.issn.1001-9278.2021.02.018 |
SONG Kunpeng, WANG Yinjie, LIU Jiping, et al. Research progress in applications of phosphazene compounds in flame retardant polymers field[J]. China Plastics, 2021, 35(2): 107-118.
doi: 10.19491/j.issn.1001-9278.2021.02.018 |
|
[8] |
ZHAO S, HE M, LIU X, et al. Synthesis of a cyclomatrix-type polyphosphazenes microspheres and its flame retardancy on polycarbonate[J]. Scientia Sinica Chimica, 2017, 48(3): 282-288.
doi: 10.1360/N032017-00151 |
[9] |
MENG W, WU H, BI X, et al. Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin[J]. Microporous and Mesoporous Materials, 2021. DOI: 10.1016/j.micromeso.2021.110885.
doi: 10.1016/j.micromeso.2021.110885 |
[10] |
JIAN R, LIN X, LIU Z, et al. Rationally designed zinc borate@ZIF-8 core-shell nanorods for curing epoxy resins along with low flammability and high mechanical property[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108349.
doi: 10.1016/j.compositesb.2020.108349 |
[11] |
ZHANG J, FANG J, HAN J, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(31): 15245-15252.
doi: 10.1039/C8TA04813D |
[12] |
SHI X, DAI X, CAO Y, et al. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 3887-3894.
doi: 10.1021/acs.iecr.6b04204 |
[13] |
LI S, LI T, WANG X, et al. Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate[J]. Polymers for Advanced Technologies, 2020, 31(6): 1194-1207.
doi: 10.1002/pat.4873 |
[14] |
LV X, ZENG W, YANG Z, et al. Fabrication of ZIF-8@Polyphosphazene core-shell structure and its efficient synergism with ammonium polyphosphate in flame-retarding epoxy resin[J]. Polymers for Advanced Technologies, 2020, 31(5): 997-1006.
doi: 10.1002/pat.4834 |
[15] |
JIAN M, LIU B, ZHANG G, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465: 67-76.
doi: 10.1016/j.colsurfa.2014.10.023 |
[16] |
WEI W, LU R, XIE H, et al. Selective adsorption and separation of dyes from an aqueous solution on organic-inorganic hybrid cyclomatrix polyphosphazene submicro-spheres[J]. Journal of Materials Chemistry A, 2015, 3(8): 4314-4322.
doi: 10.1039/C4TA06444E |
[17] | 陈咏, 王颖, 何峰, 等. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J], 纺织学报, 2019, 40(10): 13-19. |
CHEN Yong, WANG Ying, HE Feng, et al. Kinetics and properties of phosphorus flame retardant copolymerized polyester[J]. Journal of Textile Research, 2019, 40(10): 13-19. | |
[18] |
QIU S, WANG X, YU B, et al. Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins[J]. J Hazard Mater, 2017, 325: 327-339.
doi: S0304-3894(16)31087-1 pmid: 27932036 |
[19] |
LI T, LI S, MA T, et al. Flame-retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire[J]. Polymers for Advanced Technologies, 2019, 31(4): 795-806.
doi: 10.1002/pat.4815 |
[20] |
XU W, WANG G, XU J, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. J Hazard Mater, 2019. DOI: 10.1016/j.jhazmat.2019.120819.
doi: 10.1016/j.jhazmat.2019.120819 |
[21] |
XU W, WANG G, LIU Y, et al. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin[J]. RSC Advances, 2018, 8(5): 2575-2585.
doi: 10.1039/C7RA12816A |
[22] | 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(7): 11-18. |
LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group[J]. Journal of Textile Research, 2021, 42(7): 11-18. |
[1] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[2] | 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39. |
[3] | 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49. |
[4] | 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18. |
[5] | 金文杰, 程献伟, 关晋平, 陈国强. 聚酰胺6织物的磺胺阻燃抗熔滴整理[J]. 纺织学报, 2022, 43(02): 171-175. |
[6] | 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9. |
[7] | 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20. |
[8] | 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18. |
[9] | 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30. |
[10] | 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10. |
[11] | 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179. |
[12] | 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21. |
[13] | 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34. |
[14] | 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19. |
[15] | 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31. |
|