纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 133-140.doi: 10.13475/j.fzxb.20210902908
胡倩1,2, 杨涛语1, 朱斐超3, 吕汪洋3,4, 吴明华1,3, 余德游1,2,4()
HU Qian1,2, YANG Taoyu1, ZHU Feichao3, LÜ Wangyang3,4, WU Minghua1,3, YU Deyou1,2,4()
摘要:
为提升铁基金属有机框架(Fe-MOFs)对印染废水深度处理的效能,采用原位掺杂溶剂热技术制备了混合Fe(Ⅱ)/Fe(Ⅲ)价态MIL-53(Fe)(MV-MIL-53(Fe))催化剂。借助X射线粉末衍射仪、场发射扫描电镜、氮气吸附仪和吡啶吸附红外光谱仪等对MV-MIL-53(Fe)晶体结构、微观形貌、孔结构和表面酸位等本征结构进行了测试分析。选取对硝基苯酚(4-NP)作为印染废水模型污染物,以过氧乙酸(PAA)为氧源,研究了MV-MIL-53(Fe)催化PAA降解4-NP的性能和关键活性物种。结果表明:Fe(Ⅱ)的引入提高了MIL-53(Fe)表面Lewis酸位密度,为PAA催化活化提供了更丰富更高效的活性位点;MV-MIL-53(Fe)/PAA体系对4-NP的降解速率常数高达0.052 1 min-1,分别是MV-MIL-53(Fe)/H2O2、MIL-53(Fe)/PAA和MIL-53(Fe)/H2O2体系的2.05、1.45和6.68倍,且MV-MIL-53(Fe)重复循环使用5次后仍保持良好的结构稳定性和催化降解性能;羟基自由基(·OH)是MV-MIL-53(Fe)催化PAA快速降解4-NP的关键活性物质。
中图分类号:
[1] | 章耀鹏, 沈忱思, 徐晨烨, 等. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 45(8): 24-33. |
ZHANG Yaopeng, SHEN Chensi, XU Chenye, et al. Review on treatment technology for typical pollutants in textile industry[J]. Journal of Textile Research, 2021, 45(8): 24-33. | |
[2] | LIN X Q, KONG W M, LIN X. Degradation of high-concentration p-nitrophenol by Fenton oxidation[J]. Water Science & Technology, 2020, 81(10): 2260-2269. |
[3] |
D'ALMEIDA S R, BUORO R M. Determination of p-nitrophenol in synthetic textile wastewater samples using a graphene oxide/palladium nanoparticles modified carbon paste electrode[J]. Electroanalysis, 2021, 33: 1623-1632.
doi: 10.1002/elan.202060539 |
[4] | 王海人, 石兴阳, 徐育, 等. 废铁屑处理含酚废水的新方法及其机理研究[J]. 环境科学与技术, 2010, 33(12): 309-311. |
WANG Hairen, SHI Xingyang, XU Yu, et al. New method of scrap iron dealing with p-nitrophenol simulated wastewater and the research of its mechanism[J]. Environmental Science & Technology, 2010, 33(12): 309-311. | |
[5] | 杨明, 刘琪, 孙健, 等. 印染废水深度处理研究及应用进展[J]. 净水技术, 2020, 39(10): 109-115. |
YANG Ming, LIU Qi, SUN Jian, et al. Research and application progress of advanced treatment of dyeing wastewater[J]. Water Purification Technology, 2020, 39(10): 109-115. | |
[6] |
PEREIRA A, RODRIGUES F, PAULINO A, et al. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review[J]. Journal of Cleaner Production, 2021, 284: 124703.
doi: 10.1016/j.jclepro.2020.124703 |
[7] |
EPSZTEIN R, DUCHANOIS R, RITT C, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6): 426-436.
doi: 10.1038/s41565-020-0713-6 pmid: 32533116 |
[8] | 胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报, 2018, 12(3): 677-696. |
HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmetal Engineering, 2018, 12(3): 677-696. | |
[9] |
HODGES B, CATES E, KIM J. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650.
doi: 10.1038/s41565-018-0216-x pmid: 30082806 |
[10] |
YANG Z, QIAN J, YU A, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6659-6664.
doi: 10.1073/pnas.1819382116 pmid: 30872470 |
[11] |
ZHOU P, REN W, NIE G, et al. Fast and long-lasting iron(Ⅲ) reduction by boron toward green and accelerated Fenton chemistry[J]. Angewandte Chemie International Edition, 2020, 59(38): 16517-16526.
doi: 10.1002/anie.202007046 |
[12] | SUN M, CHU C, GENG F, et al. Reinventing Fenton chemistry: iron oxychloride nanosheet for pH-insensitive H2O2 cctivation[J]. Environmental Science & Technology Letters, 2018, 5(3): 186-191. |
[13] |
ZHAO H, QIAN L, GUAN X, et al. Continuous bulk FeCuC aerogel with ultradispersed metal nanoparticles: an efficient 3D heterogeneous electro-Fenton cathode over a wide range of pH 3-9[J]. Environmental Science & Technology, 2016, 50(10): 5225-5233.
doi: 10.1021/acs.est.6b00265 |
[14] | XIA Q, WANG H, HUANG B, et al. State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications[J]. Small, 2018, 15(2): 1803088. |
[15] |
YU D, WU M, HU Q, et al. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: efficiency and mechanism[J]. Journal of Hazardous Materials, 2019, 367: 456-464.
doi: S0304-3894(18)31257-3 pmid: 30611038 |
[16] | WU Q, YANG H, KANG L, et al. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: acceleration of Fe(Ⅱ)/Fe(Ⅲ) cycle under visible light irradiation[J]. Applied Catalysis B: Environmental, 2020, 263: 1-6. |
[17] |
GAO C, CHEN S, QUAN X, et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants[J]. Journal of Catalysis, 2017, 356: 125-132.
doi: 10.1016/j.jcat.2017.09.015 |
[18] |
TANG J, WANG J. Metal-organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine[J]. Environmental Science & Technology, 2018, 52(9): 5367-5377.
doi: 10.1021/acs.est.8b00092 |
[19] | AO X, ELORANTA J, HUANG C, et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review[J]. Water Reseach, 2021, 188: 1-6. |
[20] |
EBRAHIM A, BANDOSZ T. Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient condi-tions[J]. ACS Applied Materials Interfaces, 2013, 5(21): 10565-10573.
doi: 10.1021/am402305u |
[21] | GAO C, SU Y, QUAN X, et al. Electronic modulation of iron-bearing heterogeneous catalysts to accelerate Fe(III)/Fe(II) redox cycle for highly efficient Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2020, 276: 1-8. |
[22] |
THOMMES M, KANEKO K, NEIMARK ALEXANDER V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
doi: 10.1515/pac-2014-1117 |
[23] |
LECLERC H, VIMONT A, LAVALLEY J, et al. Infrared study of the influence of reducible iron(Ⅲ) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal-organic framework MIL-100[J]. Physical Chemistry Chemical Physics, 2011, 13(24): 11748-11756.
doi: 10.1039/c1cp20502a |
[24] |
BING J, HU C, ZHANG L. Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone[J]. Applied Catalysis B: Environmental, 2017, 202: 118-126.
doi: 10.1016/j.apcatb.2016.09.019 |
[25] | WANG J, WANG Z, CHENG Y, et al. Molybdenum disulfide (MoS2): a novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J]. Water Research, 2021, 201: 1-5. |
[1] | 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111. |
[2] | 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118. |
[3] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
[4] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[5] | 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166. |
[6] | 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131. |
[7] | 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120. |
[8] | 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128. |
[9] | 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60. |
[10] | 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110. |
[11] | 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195. |
[12] | 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127. |
[13] | 张雨晗, 申国栋, 樊威, 孙润军. 芳纶固载BiOBr复合材料的制备及其光催化降解染色废水[J]. 纺织学报, 2021, 42(08): 128-134. |
[14] | 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183. |
[15] | 徐晨烨, 顾春节, 倪亦凡, 沈忱思, 王华平, 乌婧, 李方. 纤维微塑料在印染废水产排污环节的赋存特征[J]. 纺织学报, 2021, 42(06): 26-34. |
|