纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 148-153.doi: 10.13475/j.fzxb.20211007606
ZHANG Wenhuan1, JIANG Shu1, LI Jun1,2()
摘要:
为合理评价羽绒服装系统的热湿舒适性,准确获取服装的面积因子,利用手持式三维扫描仪对12套羽绒服装系统进行扫描并计算。通过相关性分析确定了服装设计参数(总充绒量、长度)、服装热物理性能(固有热阻和总热阻)与面积因子的相关关系,并基于各影响因素建立了面积因子预测模型。以固有热阻预测面积因子方法作为切入点,探讨了标准数据库中面向轻薄服装的面积因子计算方法在羽绒服装系统中的适用性,并进一步考察了总热阻预测面积因子方法的有效性。结果表明:羽绒服总充绒量与面积因子具有显著相关关系,且长度的作用依赖于单位面积充绒量;相较于固有热阻预测面积因子的方法,总热阻预测法具有更高的预测准确性。
中图分类号:
[1] |
FU M, WENG W, CHEN W, et al. Review on modeling heat transfer and thermoregulatory responses in human body[J]. Journal of Thermal Biology, 2016, 62: 189-200.
doi: S0306-4565(16)30016-X pmid: 27888933 |
[2] |
KOELBLEN B, PSIKUTA A, BOGDAN A, et al. Thermal sensation models: a systematic comparison[J]. Indoor Air, 2017, 27(3): 680-689.
doi: 10.1111/ina.12329 pmid: 27564215 |
[3] |
KOELBLEN B, PSIKUTA A, BOGDAN A, et al. Thermal sensation models: validation and sensitivity towards thermo-physiological parameters[J]. Building and Environment, 2018, 130: 200-211.
doi: 10.1016/j.buildenv.2017.12.020 |
[4] |
ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort[J]. Building and Environment, 2010, 45(2): 399-410.
doi: 10.1016/j.buildenv.2009.06.020 |
[5] |
ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts[J]. Building and Environment, 2010, 45(2): 380-388.
doi: 10.1016/j.buildenv.2009.06.018 |
[6] | 陈扬, 杨允出, 张艺强, 等. 电加热服装中加热片与织物组合体的稳态热传递模拟[J]. 纺织学报, 2018, 39(5): 49-55. |
CHEN Yang, YANG Yunchu, ZHANG Yiqiang, et al. Simulation of steady heat transfer on fabrics system embedded with heating unit in electrically heated clothing[J]. Journal of Textile Research, 2018, 39 (5): 49-55.
doi: 10.1177/004051756903900109 |
|
[7] | XU J, PSIKUTA A, LI J, et al. Evaluation of the convective heat transfer coefficient of human body and its effect on the human thermoregulation predictions[J]. Building and Environment, 2021, 196: 1-16. |
[8] |
KATIĆ K, LI R, ZEILER W. Thermophysiological models and their applications: a review[J]. Building and Environment, 2016, 106: 286-300.
doi: 10.1016/j.buildenv.2016.06.031 |
[9] |
VESELÁ S, KINGMA B R M, FRIJNS A J H. Local thermal sensation modeling: a review on the necessity and availability of local clothing properties and local metabolic heat production[J]. Indoor Air, 2017, 27(2): 261-272.
doi: 10.1111/ina.12324 |
[10] | HAVENITH G, FIALA D. Thermal indices and thermophysiological modeling for heat stress[J]. Comprehensive Physiology, 2016, 6(1): 255-302. |
[11] | 王云仪, 张雪, 李小辉, 等. 基于 Geomagic 软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 31-35. |
WANG Yunyi, ZHANG Xue, LI Xiaohui, et al. Feature extraction of air layer under burning dummies based on geomagic software[J]. Journal of Textile Research, 2012, 33(11): 31-35. | |
[12] |
VESELÁ S, PSIKUTA A, FRIJNS A J H. Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions[J]. International Journal of Biometeorology, 2018, 62(12): 2215-2229.
doi: 10.1007/s00484-018-1625-0 pmid: 30374599 |
[13] |
KUKLANE K, TOMA R. Common clothing area factor estimation equations are inaccurate for highly insula-ting (Icl>2 clo) and non-western loose-fitting clothing ensembles[J]. Industrial Health, 2021, 59(2): 107-116.
doi: 10.2486/indhealth.2020-0209 |
[14] | 王诗潭, 汪秀花, 王云仪. 连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用[J]. 纺织学报, 2021, 42(9): 137-142. |
WANG Shitan, WANG Xiuhua, WANG Yunyi. Determination of undergarment clearance characteristic index and its application in fitting evaluation of one-sies[J]. Journal of Textile Research, 2021, 42(9): 137-142.
doi: 10.1177/004051757204200301 |
|
[15] |
MERT E, BÖHNISCH S, PSIKUTA A, et al. Contribution of garment fit and style to thermal comfort at the lower body[J]. International Journal of Biometeorology, 2016, 60(12): 1995-2004.
pmid: 27757698 |
[16] |
KUKLANE K, TOMA R. Validation of ISO 9920 clothing item insulation summation method based on an ambulance personnel clothing system[J]. Industrial Health, 2021, 59(1): 27-33.
doi: 10.2486/indhealth.2020-0208 pmid: 33191316 |
[17] | 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1): 167-172. |
SU Yun, WANG Yunyi, LI Jun. Research progress on heat transfer mechanism of air layer in firefighting clothing[J]. Journal of Textile Research, 2016, 37(1): 167-172. |
[1] | 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(09): 167-174. |
[2] | 汪芬芬, 王革辉, 黄添宜, 张向辉, 王永荣. 正侧面形态特征驱动的女性腿型分类[J]. 纺织学报, 2022, 43(09): 188-194. |
[3] | 钱静, 赵蒙蒙, 党天华. 多孔式通风服衣下空气层的定量研究[J]. 纺织学报, 2022, 43(04): 133-139. |
[4] | 王诗潭, 汪秀花, 王云仪. 连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用[J]. 纺织学报, 2021, 42(09): 137-143. |
[5] | 赵倩, 邓咏梅. 基于层次分析法的三维人体扫描仪的选择[J]. 纺织学报, 2021, 42(04): 155-161. |
[6] | 刘芸, 修毅. 基于B/S架构的数字人台变形NURBS曲面模型[J]. 纺织学报, 2020, 41(10): 137-143. |
[7] | 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145. |
[8] | 苏文桢, 宋文芳, 卢业虎, 杨秀月. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(02): 115-118. |
[9] | 余佳佳, 李健. 基于不同人体测量方法的数据一致性和可替换性研究[J]. 纺织学报, 2019, 40(09): 167-172. |
[10] | 史玉媛 申鸿 魏振乾. 腰省量分配对无袖修身旗袍造型的影响[J]. 纺织学报, 2018, 39(08): 105-109. |
[11] | 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115. |
[12] | 杨刚;;钟跃崎;. 基于同层穿透补偿的扫描服装模型的重用性[J]. 纺织学报, 2010, 31(10): 134-138. |
[13] | 徐继红;张文斌. 人体与服装特征曲面间距离松量的影响因子[J]. 纺织学报, 2009, 30(05): 104-108. |
[14] | 徐继红;张文斌;肖平. 人体与服装特征曲面间面积松量的分配关系[J]. 纺织学报, 2008, 29(5): 102-106. |
[15] | 金江昌. 羽绒服面料的透湿性与其结构之间关系的探讨[J]. 纺织学报, 1999, 20(02): 46-49. |
|