纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 16-21.doi: 10.13475/j.fzxb.20210807406
张长欢1, 李纤纤1, 张力冉1, 李德阳1, 李念武2, 吴红艳1()
ZHANG Changhuan1, LI Xianxian1, ZHANG Liran1, LI Deyang1, LI Nianwu2, WU Hongyan1()
摘要:
为更好满足柔性锂离子电池对电极材料柔性化的需求,通过静电纺丝以及热处理的方法制备了兼具柔韧性和自支撑性能的磷酸铁锂/炭黑/碳纳米纤维(LiFePO4/CB/CNFs)柔性正极材料,并对其结构和性能进行表征与分析。结果表明:合成的LiFePO4活性物质为橄榄石结构,自支撑LiFePO4/CB/CNFs柔性正极为具有较高孔隙的三维网络结构,CB和LiFePO4活性物质均可较均匀地嵌在CNFs基体中,CB在LiFePO4活性物质生成过程中对其纯度和晶体结构的形成未产生影响;当CB质量分数为0.10%和0.15%时,柔性正极均具有较好的电化学可逆性,首圈放电比容量分别为141.1和139.1 mA·h/g,首圈库伦效率分别为87.3%和87.6%,且循环100圈后仍保持性能稳定,第2圈后的库伦效率维持在99%左右。
中图分类号:
[1] |
ZHU Y H, YANG X Y, LIU T, et al. Flexible 1D batteries: recent progress and prospects[J]. Advanced Materials, 2020. DOI:10.1002/adma.201901961.
doi: 10.1002/adma.201901961 |
[2] |
张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
doi: 10.7536/PC200528 |
ZHANG Changhuan, LI Nianwu, ZHANG Xiuqin. Electrode materials for flexible lithium-ion battery[J]. Progress in Chemistry, 2021, 33(4): 633-648.
doi: 10.7536/PC200528 |
|
[3] |
ZHU Y J, YANG M, HUANG Q Y, et al. V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries[J]. Advanced Materials, 2020. DOI:10.1002/adma.201906205.
doi: 10.1002/adma.201906205 |
[4] |
OKUBO M, HOSONO E, KIM J, et al. Nano-size effect on high-rate Li-ion intercalation in LiCoO2electrode[J]. Journal of the American Chemical Society, 2007, 129(23): 7444-7452.
doi: 10.1021/ja0681927 |
[5] |
KO H S, KIM J H, WANG J, et al. Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries[J]. Journal of Power Sources, 2017, 372(31): 107-115.
doi: 10.1016/j.jpowsour.2017.10.021 |
[6] |
WANG J, ZHANG Q, LI X, et al. A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance[J]. Electrochemistry Communications, 2013, 36: 6-9.
doi: 10.1016/j.elecom.2013.08.025 |
[7] |
XIA H, RAGAVENDRAN K R, XIE J, et al. Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries[J]. Journal of Power Sources, 2012, 212: 28-34.
doi: 10.1016/j.jpowsour.2012.03.079 |
[8] | 陈超. 石墨烯包覆及离子掺杂协同改性LiFePO4正极材料[D]. 桂林: 桂林理工大学, 2021: 3-8. |
CHEN Chao. Synergistically modified LiFePO4 cathode material by graphene coating and ion doping[D]. Guilin: Guilin University of Technology, 2021: 3-8. | |
[9] |
KIRSCH D J, LACEY S D, KUANG Y D, et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Applied Energy Materials, 2019, 2(5): 2990-2997.
doi: 10.1021/acsaem.9b00066 |
[10] |
HA S H, SHIN K H, PARK H W, et al. Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles[J]. Small, 2018. DOI:10.1002/smll.201703418.
doi: 10.1002/smll.201703418 |
[11] | BAO Y H, HONG G Q, CHEN Y, et al. Customized kirigami electrodes for flexible and deformable lithium-ion batteries[J]. ACS Applied Material & Interfaces, 2020, 12(1): 780-788. |
[12] |
WANG Y B, CHEN C J, XIE H. 3D-printed all-fiber Li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017. DOI:10.1002/adfm.201703140.
doi: 10.1002/adfm.201703140 |
[13] | 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176. |
KANG Weimin, FAN Lanlan, DEGN Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017, 38(11): 168-176. | |
[14] | 阳智, 刘呈坤, 吴红, 等. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(7): 54-61. |
YANG Zhi, LIU Chengkun, WU Hong, et al. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers[J]. Journal of Textile Research, 2021, 42(7): 54-61. | |
[15] |
TOPRAKCI O, JI L W, LIN Z, et al. Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 7692-7699.
doi: 10.1016/j.jpowsour.2011.04.031 |
[16] |
CHEN Q Q, QIAO X C, PENG C, et al. Electrochemical performance of electrospun LiFePO4/C submicrofibers composite cathode material for lithium ion batteries[J]. Electrochimica Acta, 2012, 78: 40-48.
doi: 10.1016/j.electacta.2012.05.143 |
[17] |
ZHANG C H, LIANG Y Z, YAO L, et al. Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015, 627: 91-100.
doi: 10.1016/j.jallcom.2014.12.067 |
[18] |
ZHANG C H, YAO L, QIU Y P. Synthesis and characterization of LiFePO4-carbon nanofiber-carbon nanotube composites as the cathode material for lithium-ion batteries prepared by electrospinning and thermal treatment[J]. Journal of Applied Polymer Science, 2016. DOI: 10.1002/app.43001.
doi: 10.1002/app.43001 |
[19] | 张学虎. 炭黑及生物质基硬碳复合材料的制备及储锂/钠性能应用[D]. 鞍山: 辽宁科技大学, 2021: 10. |
ZHANG Xuehu. Preparation of carbon black and biomass-based hard carbon composites and application of lithium/sodium storage performance[D]. Anshan: University of Science and Technology Liaoning, 2021: 10. | |
[20] | 陈远强. 聚吡咯/炭黑复合材料制备及其在铅酸电池中的应用[J]. 工程塑料应用, 2021, 49(8):1-7. |
CHEN Yuanqiang. Preparation of polypyrrole/carbon black composites and their applications in lead-acid batteries[J]. Engineering Plastics Application, 2021, 49(8):1-7. | |
[21] | 张长欢. 基于静电纺丝法的锂离子电池正极用 LiFePO4-CNF复合材料的结构设计、制备及其性能研究[D]. 上海: 东华大学, 2015: 48, 50-51. |
ZHANG Changhuan. Design, preparation, and properties of LiFePO4-carbon nanofiber composite materials for lithium ion batteries cathode based on the electrospinning method[D]. Shanghai: Donghua University, 2015: 48, 50-51. | |
[22] |
JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils[J]. Journal of the Electrochemical Society, 1996, 143: 2204-2211.
doi: 10.1149/1.1836981 |
[1] | 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15. |
[2] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[3] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[4] | 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215. |
[5] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[6] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[7] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
[8] | 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56. |
[9] | 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184. |
[10] | 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69. |
[11] | 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76. |
[12] | 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85. |
[13] | 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46. |
[14] | 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209. |
[15] | 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30. |
|