纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 163-171.doi: 10.13475/j.fzxb.20210901109

• 服装工程 • 上一篇    下一篇

结合特征学习与注意力机制的服装图像分割

顾梅花(), 刘杰, 李立瑶, 崔琳   

  1. 西安工程大学 电子信息学院, 陕西 西安 710048
  • 收稿日期:2021-09-06 修回日期:2022-07-27 出版日期:2022-11-15 发布日期:2022-12-26
  • 作者简介:顾梅花(1980—),女,副教授,博士。主要研究方向为图像处理与分析。E-mail:gumh2001@163.com
  • 基金资助:
    国家自然科学基金项目(61901347)

Clothing image segmentation method based on feature learning and attention mechanism

GU Meihua(), LIU Jie, LI Liyao, CUI Lin   

  1. School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-09-06 Revised:2022-07-27 Published:2022-11-15 Online:2022-12-26

摘要:

针对小尺寸服装与遮挡服装图像分割准确率低的问题,提出一种基于改进多尺度特征学习策略与注意力机制的服装图像分割方法。以Mask R-CNN为基础框架,首先采用增强特征金字塔网络优化模型的特征学习过程,对多尺度服装特征进行统一监督,缩小不同层级之间的语义差距,引入残差特征增强模块减少高层特征损失,采用软感兴趣区域选择自适应地获取最优感兴趣区域特征;然后在分类预测分支引入通道注意力模块,在边界框回归与掩膜预测分支分别引入空间注意力模块,提取图像中需要重点关注的服装区域特征。结果表明,与其他方法相比,本文方法改善了小尺寸服装图像和遮挡服装图像分割中存在的漏检、漏分割现象,提取出的服装实例更精确,其平均精度均值比原模型提升了3.8%。

关键词: 服装图像分割, 多尺度特征学习, 一致监督策略, 残差特征增强, 软感兴趣区域选择, 注意力机制

Abstract:

Aiming at the low accuracy of small size clothing and occlusion clothing image segmentation, a clothing image segmentation method based on improved multi-scale feature learning strategy and attention mechanism was proposed, using Mask R-CNN as the basic framework. Augmentation feature pyramid network was used to optimize the feature learning process of the model, the semantic gap between different levels was narrowed through unified supervision of multi-scale clothing features, the residual feature enhancement module was introduced to reduce the loss of high level features, and soft region of interest selection was used to adaptively obtain the optimal region of interest characteristics. Then, the channel attention module was introduced into the classification prediction branch, the spatial attention modules were introduced into the bounding box regression and mask prediction branches respectively, and the clothing area features that need to be focused on in the image were extracted. The experimental results show that the proposed method can improve the detection rate and the segmentation completeness in dealing with small size clothing and occlusion clothing images, and the extracted clothing instance is more accurate comparing with the other methods, and the mean average precision is 3.8 points higher than that of the original model.

Key words: clothing image segmenttation, multi-scale feature learning, consistent supervision, residual feature augmentation, soft region of interest selection, attention mechanism

中图分类号: 

  • TS941.2

图1

Mask R-CNN服装图像分割模型结构示意图"

图2

Mask R-CNN服装图像分割效果"

图3

AguFPN模块网络结构"

图4

残差特征增强原理"

图5

结合通道注意力的类别预测分支流程图"

图6

结合空间注意力的边界框回归分支流程图"

图7

结合空间注意力的掩膜预测分支流程图"

表1

DeepFashion2数据集样本分布情况"

服装类型 数量 服装类型 数量
短袖上衣 180 000 长裤 145 000
长袖上衣 90 000 连衣裙 83 000
短袖外套 3 000 短袖连衣裙 46 500
长袖外套 37 000 背心裙 47 500
短裤 87 000 长袖连衣裙 20 000
背心 40 000 吊带裙 18 000
吊带 4 000

图8

各算法对小尺寸、多目标以及仰角服装图像的分割效果比较"

图9

各算法对遮挡服装图像的分割效果比较"

表2

各算法分割精度对比"

算法 特征提取
网络
注意力
机制
Iou/
%
MAP/
%
AP50/
%
AP75/
%
FCIS ResNet50 46.5 29.2 47.8 30.3
Mask R-CNN ResNet50+FPN 70.6 31.3 51.7 32.5
Mask R-CNN+ ResNet50+AugFPN 73.7 33.6 53.4 34.7
本文算法 ResNet50+AugFPN 75.9 35.1 55.2 35.4
[1] 蔡鹏飞, 叶剑锋. 结合改进CNN和双线性模型的CBIR方法[J]. 计算机工程与应用, 2019, 55(16): 191-196.
doi: 10.3778/j.issn.1002-8331.1805-0169
CAI Pengfei, YE Jianfeng. CBIR method based on improved CNN and bilinear model[J]. Computer Engineering and Applications, 2019, 55(16): 191-196.
doi: 10.3778/j.issn.1002-8331.1805-0169
[2] XU F F, TIAN Y, ZHENG S T. A clothing retrieval model based on DenseNet and multi-similarity loss[J]. Journal of Physics: Conference Series, 2020, 1684(1): 54-65.
[3] 徐慧, 白美丽, 万韬阮, 等. 基于深度学习的服装图像语义分析与检索推荐[J]. 纺织高校基础科学学报, 2020, 33(3): 64-72.
XU Hui, BAI Meili, WAN Taoruan, et al. Image semantic analysis and retrieval recommendation for clothing based on deep learning[J]. Basic Sciences Journal of Textile Universities, 2020, 33(3): 64-72.
[4] 刘梦林, 王晓云, 许君. 图像提取技术在服装轮廓与图案提取中的研究进展[J]. 北京服装学院学报(自然科学版), 2020, 40(3): 96-105.
LIU Menglin, WANG Xiaoyun, XU Jun. Research progress of image extraction technology in clothing contour and pattern extraction[J]. Journal of Beijing Institute of Fashion Technology, (Natural Science Edition) 2020, 40(3): 96-105.
[5] 杨怡然, 吴巧英. 智能化服装搭配推荐研究进展[J]. 浙江理工大学学报(自然科学版), 2021, 45(1): 1-12.
YANG Yiran, WU Qiaoying. Research progress of intelligent clothing matching recommendation[J]. Journal of Zhejiang Sci-Tech University(Natural Science Edition), 2021, 45(1): 1-12.
[6] 杨思, 徐增波, 陈冲. 结合Faster R-CNN与Grabcut算法的服装图像自动分割[J]. 智能计算机与应用, 2020, 10(7): 306-310.
YANG Si, XU Zengbo, CHEN Chong. Automatic segmentation of clothing images based on Faster R-CNN and Grabcut algorithm[J]. Intelligent Computer and Applications, 2020, 10(7): 306-310.
[7] 李东, 万贤福, 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(5): 122-127.
LI Dong, WAN Xianfu, WANG Jun. Clothing style recognition approach using Fourier descriptor and support vector machines[J]. Journal of Textile Research, 2017, 38(5): 122-127.
[8] 陈双, 何利力, 郑军红. 基于深度学习的服装图像检索方法[J]. 计算机系统应用, 2019, 28(3): 231-236.
CHEN Shuang, HE Lili, ZHENG Junhong. Clothing image retrieval method based on deep learning[J]. Computer Systems & Applications, 2019, 28(3): 231-236.
[9] 李立瑶, 顾梅花, 杨娜. 融合自适应局部特征与改进模糊C均值的服饰分割算法[J]. 纺织高校基础科学学报, 2021, 34(1): 47-54.
LI Liyao, GU Meihua, YANG Na. Clothing segmentation method combined with adaptive local features and improved fuzzy C-means[J]. Basic Sciences Journal of Textile Universities, 2021, 34(1): 47-54.
[10] 郭鑫鹏, 黄元元, 胡作进. 融合颜色与纹理的复杂场景下的服装图像分割算法[J]. 计算机科学, 2017, 44(S2): 228-232.
GUO Xinpeng, HUANG Yuanyuan, HU Zuojin. Unsupervised complex-scene clothing image segmentation algorithm based on color and texture features[J]. Computer Science, 2017, 44(S2): 228-232.
[11] 张茜, 刘骊, 付晓东, 等. 结合标签优化和语义分割的服装图像检索[J]. 计算机辅助设计与图形学学报, 2020, 32(9): 1450-1465.
ZHANG Qian, LIU Li, FU Xiaodong, et al. Clothing image retrieval by label optimization and semantic segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(9): 1450-1465.
[12] 李宗民, 李妍特, 刘玉杰, 等. 结合层次分割和跨域字典学习的服装检索[J]. 中国图象图形学报, 2017, 22(3): 358-365.
LI Zongmin, LI Yante, LIU Yujie, et al. Clothing retrieval combining hierarchical over-segmentation and cross-domain dictionary learning[J]. Journal of Image And Graphics, 2017, 22(3): 358-365.
[13] GE Y, ZHANG R, WANG X, et al. Deepfashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images[C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5337-5345.
[14] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// IEEE International Conference on Computer Vision. Shenzhen: IEEE, 2017: 2961-2969.
[15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[16] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 2117-2125.
[17] GUO C, FAN B, ZHANG Q, et al. Augfpn: improving multi-scale feature learning for object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12595-12604.
[18] HU J, SHEN L, SUN G. Squeeze and excitation networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[19] ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep net-works[C]// IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 6688-6697.
[20] LI Y, QI H Z, DAI J F, et al. Fully convolutional instance-aware semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 2359-2367.
[1] 肖伯祥, 刘正东, 郭昱成, 王渊霞. 基于三维人体扫描模型的衬衣版型生成方法[J]. 纺织学报, 2022, 43(12): 151-159.
[2] 贾静, 曹竟文, 徐平华, 林瑞冰, 孙晓婉. 基于京剧脸谱意象色彩的服饰纹样自动配色[J]. 纺织学报, 2022, 43(12): 160-166.
[3] 刘成霞, 张亚琦. 织物多方向弯曲性能测试新方法[J]. 纺织学报, 2022, 43(10): 53-57.
[4] 刘咏梅, 薛惠心, 徐丹娘, 张向辉. 2020版东华女装原型的持续性结构修正[J]. 纺织学报, 2022, 43(07): 135-140.
[5] 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(04): 203-209.
[6] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[7] 王春茹, 袁月, 曹晓梦, 范依琳, 钟安华. 立领结构参数对服装造型的影响[J]. 纺织学报, 2022, 43(03): 153-159.
[8] 蒋高明, 周濛濛, 郑宝平, 郑培晓, 刘海桑. 绿色低碳针织技术研究进展[J]. 纺织学报, 2022, 43(01): 67-73.
[9] 王迪, 柯莹, 王宏付. Voronoi图形在参数化服装造型构建中的应用[J]. 纺织学报, 2021, 42(12): 131-137.
[10] 彭稀, 屠永坚, 周赳. 纬排2比1纬二重渐变显色结构设计原理与方法[J]. 纺织学报, 2021, 42(12): 63-69.
[11] 徐明慧, 徐平华, 韦秋菊, 丁雪梅, 冒海琳. 基于网络关系模型的品牌女装配色解析[J]. 纺织学报, 2021, 42(11): 137-142.
[12] 庹武, 王哓玉, 高雅昆, 于媛媛, 郝潇潇, 刘永亮, 郭鑫. 基于改进边缘检测算法的服装款式识别[J]. 纺织学报, 2021, 42(10): 157-162.
[13] 张爱丹, 郭珍妮, 汪阳子. 模块组合全显色结构提花织物设计与仿色优化比较[J]. 纺织学报, 2021, 42(10): 67-74.
[14] 陆爽怿, 周赳. 单经双纬组合全显色提花织物的结构交织平衡特征[J]. 纺织学报, 2021, 42(09): 59-65.
[15] 唐茜, 张冰冰, 郑笑雨. 婴幼儿可穿戴智能监测服装设计[J]. 纺织学报, 2021, 42(08): 156-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .