纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 212-218.doi: 10.13475/j.fzxb.20210607707

• 综合述评 • 上一篇    下一篇

基于运动生物力学的防护服装活动性能研究进展

戴艳阳1, 王诗潭1, 王云仪1,2, 李俊1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2021-06-28 修回日期:2022-07-27 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 李俊
  • 作者简介:戴艳阳(1994—),女,博士生。主要研究方向为服装人体工效学与功能防护服装。
  • 基金资助:
    中央高校基本科研业务费专项基金资助项目(2232022G-08)

Research progress in mobility performance of protective clothing based on sports biomechanics

DAI Yanyang1, WANG Shitan1, WANG Yunyi1,2, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-06-28 Revised:2022-07-27 Published:2022-11-15 Online:2022-12-26
  • Contact: LI Jun

摘要:

为准确评估防护服装的活动性能,定量分析防护服装对人体骨肌系统造成的不良影响,基于运动生物力学分别从着装人体的外在运动学行为及内在动力学响应两层面阐述防护服装活动性能的研究现状;梳理了着装人体平衡稳定性相关的特征,总结了肢体活动灵活性相关的表现,分析了人体动力学响应。研究发现:在“服装-人体-环境”系统中,防护服装的尺寸及结构设计、装备的质量及分布位置、人体体型、服装与人体的适配性、环境温度及地面条件均会影响防护服装的活动性能。指出:未来研究应深入挖掘各指标间的关系来剖析着装人体在任务中的动力学补偿策略差异,模拟真实工况条件以全面揭示防护服装活动性能影响机制,提高活动性能评估准确性并合理预测人体骨肌损伤风险。

关键词: 防护服装, 活动性能, 运动生物力学, 着装人体, 骨骼肌肉系统

Abstract:

In order to accurately evaluate the mobility performance of protective clothing and quantitatively analyze the adverse effects on the human musculoskeletal system, the current research progress in the mobility performance of protective clothing was reviewed in two aspects based on the methods of sports biomechanics, i.e., the external kinematic behavior and internal dynamic response of the human body. The performance characteristics related to human balance and stability were sorted out, the performance behaviors related to limb flexibility were summarized, and the dynamic response of the human body was analyzed. It was concluded that in the "clothing-human-environment" system, the size and structural design of protective clothing, the weight and distribution of the equipment, the body shape, the suitability of clothing and the human body, ambient temperature and ground conditions will all affect mobility performance of the protective clothing. Future researches in this area should further explore the relationship among various indicators to analyze differences in compensation strategies of clothed human bodies in the activity task, simulate the real working conditions to fully reveal the impact mechanism of the mobility performance of protective clothing, improve the accuracy of mobility performance evaluation and reasonably predict the risk of human bone and muscle injury.

Key words: protective clothing, mobility performance, sports biomechanics, clothed human body, musculoskeletal system

中图分类号: 

  • TS941.16

表1

着装人体平衡稳定性的测评指标"

测量类别 细分指标
步态参数 步长、步宽、步频、步速
足底压力 压力分布、压力中心前后偏移、压力中心左右偏移
地面反作用力 垂直方向力、前后方向力、左右方向力
[1] MANDAL S, CAMENZIND M, ANNAHEIM S, et al. Firefighters’ protective clothing and equipment: performance, protection, and comfort[M]. Boca Raton: Taylor & Francis Group, 2019: 31-47.
[2] WEN S. Physiological strain and physical burden in chemical protective coveralls[D]. Alberta: University of Alberta, 2014: 115-159.
[3] DING L, LI X, HEDGE A, et al. Optimizing the physical ergonomics indices for the use of partial pressure suits[J]. Applied Ergonomics, 2015, 47: 72-83.
doi: 10.1016/j.apergo.2014.08.021 pmid: 25479976
[4] TAYLOR N A S, PEOPLES G E, PETERSEN S R. Load carriage, human performance, and employment standards[J]. Applied Physiology Nutrition and Metabolism, 2016, 41(6): 131-147.
[5] DORMAN L E, HAVENITH G. The effects of protective clothing on energy consumption during different activi-ties[J]. European Journal of Applied Physiology, 2009, 105(3): 463-470.
doi: 10.1007/s00421-008-0924-2
[6] JUSSILA K, VALKAMA A, REMES J, et al. The effect of cold protective clothing on comfort and perception of performance[J]. International Journal of Occupational Safety & Ergonomics, 2010, 16(2): 185-197.
[7] 何佳臻, 李俊. 防护服工效性能评价方法研究进展[J]. 纺织学报, 2014, 35(1): 158-164.
HE Jiazhen, LI Jun. Advances in research of ergonomic evaluation for protective clothing[J]. Journal of Textile Research, 2014, 35(1): 158-164.
[8] HAVENITH G, HEUS R. A test battery related to ergonomics of protective clothing[J]. Applied Ergonomics, 2004, 35: 3-20.
pmid: 14985136
[9] ASHDOWN S P. Improving body movement comfort in apparel[M]. Cambridge: Woodhead Publishing Limited, 2011: 278-302.
[10] 王诗潭, 王云仪. 防护服活动性及其对职业骨肌损伤影响的研究进展[J]. 丝绸, 2018, 55(8): 52-59.
WANG Shitan, WANG Yunyi. Research progress on protective clothing mobility and its impact on musculoskeletal injury[J]. Journal of Silk, 2018, 55(8): 52-59.
[11] RENBERG J, CHRISTIANSEN M T, WIGGEN Q N, et al. Metabolic rate and muscle activation level when wearing state-of-the-art cold-weather protective clothing during level and inclined walking[J]. Applied Ergonomics, 2020, 82: 102956.
doi: 10.1016/j.apergo.2019.102956
[12] LENTON G K, DOYLE T L A, SAXBY D J, et al. Integrating a hip belt with body armour reduces the magnitude and changes the location of shoulder pressure and perceived discomfort in soldiers[J]. Ergonomics, 2018, 61(4): 566-575.
doi: 10.1080/00140139.2017.1381278 pmid: 28918698
[13] PARK H, BRANSON D, KIM S, et al. Effect of armor and carrying load on body balance and leg muscle function[J]. Gait & Posture 2014, 39(1): 430-435.
doi: 10.1016/j.gaitpost.2013.08.018
[14] 宋蛟龙, 王博岩. 军事训练伤流行病学分析及对策探索[J]. 临床医药文献杂志, 2019, 6(18): 180-181.
SONG Jiaolong, WANG Boyan. Epidemiological analysis of military training injuries and exploration of countermeasures[J]. Journal of Clinical Medical, 2019, 6(18): 180-181.
[15] FROST D M, BEACH T A C, CROSBY I, et al. Firefighter injuries are not just a fireground problem[J]. Work, 2015, 52(4): 835-842.
doi: 10.3233/WOR-152111 pmid: 26409354
[16] GÓMEZ L, DíAZ C A, OROZCO G A, et al. Dynamic analysis of forces in the lumbar spine during bag carry-ing[J]. International Journal of Occupational Safety Ergonomics, 2018, 24(4): 605-613.
doi: 10.1080/10803548.2017.1352224
[17] O'LEARY T J, SAUNDERS S C, MCGUIRE S J, et al. Sex differences in neuromuscular fatigability in response to load carriage in the field in British Army recruits[J]. Journal of Science and Medicine in Sport, 2018, 21(6): 591-595.
doi: S1440-2440(17)31668-7 pmid: 29100827
[18] LENTON G, DOYLE T, LLOYD D, et al. Lower-limb joint work and power are modulated differently during load carriage based on speed and load configuration[J]. Journal of Biomechanics, 2019, 83: 174-180.
doi: 10.1016/j.jbiomech.2018.11.036
[19] PARK K, SY J F, HORN G P, et al. Assessing gait changes in firefighters after firefighting activities and while carrying asymmetric loads[J]. Applied Ergonomics, 2018, 70: 44-50.
doi: S0003-6870(18)30024-3 pmid: 29866324
[20] LAFIANDRA M, HARMAN E. The distribution of forces between the upper and lower back during load carriage[J]. Medicine & Science in Sports & Exercise, 2004, 36(3): 460-467.
[21] TAY C S, LEE J K W, TEO Y S, et al. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage[J]. Gait & Posture, 2016, 43: 17-23.
doi: 10.1016/j.gaitpost.2015.10.010
[22] LOONEY D P, DOUGHTY E M, FIGUEIREDO P S, et al. Effects of modern military backpack loads on walking speed and cardiometabolic responses of US Army Soldiers[J]. Applied Ergonomics, 2021, 94: 1-6.
[23] KESLER R M, DEETJEN G S, BRADLEY F F, et al. Impact of SCBA size and firefighting work cycle on firefighter functional balance[J]. Applied Ergonomics, 2018, 69: 112-119.
doi: S0003-6870(18)30014-0 pmid: 29477318
[24] BAGGALEY M, ESPOSITO M, XU C, et al. Effects of load carriage on biomechanical variables associated with tibial stress fractures in running[J]. Gait & Posture, 2020, 77: 190-194.
doi: 10.1016/j.gaitpost.2020.01.009
[25] PARK K, ROSENGREN K S, HORN G P, et al. Assessing gait changes in firefighters due to fatigue and protective clothing[J]. Safety Science, 2011, 49(5): 719-726.
doi: 10.1016/j.ssci.2011.01.012
[26] HINDE K, LLOYD R, LOW C, et al. The effect of temperature, gradient, and load carriage on oxygen consumption, posture, and gait characteristics[J]. European Journal of Applied Physiology, 2017, 117(3): 417-430.
doi: 10.1007/s00421-016-3531-7 pmid: 28154976
[27] YOO B. The effect of carrying a military backpack on a transverse slope and sand surface on lower limb during gait[D]. State of Utah: the University of Utah, 2014: 18-70.
[28] CHOW D, LEUNG D, HOLMES A D. The effects of load carriage and bracing on the balance of schoolgirls with adolescent idiopathic scoliosis[J]. European Spine Journal, 2007, 16(9): 1351-1358.
pmid: 17340156
[29] BISWAS A, LEMAIRE E D, KOFMAN J. Dynamic gait stability index based on plantar pressures and fuzzy logic[J]. Journal of Biomechanics, 2008, 41(7): 1574-1581.
doi: 10.1016/j.jbiomech.2008.02.009 pmid: 18395211
[30] CASTRO M, ABREU S, SOUSA H, et al. Ground reaction forces and plantar pressure distribution during occasional loaded gait[J]. Applied Ergonomics, 2013, 44(3): 503-509.
doi: 10.1016/j.apergo.2012.10.016 pmid: 23157973
[31] GOFFAR S L, REBER R J, CHRISTIANSEN B, et al. Changes in dynamic plantar pressure during loaded gait[J]. Physical Therapy, 2013, 93(9): 1175-1184.
doi: 10.2522/ptj.20120103 pmid: 23580629
[32] TILBURY-DAVIS D C, HOOPER R H. The kinetic and kinematic effects of increasing load carriage upon the lower limb[J]. Human Movement Science, 1999, 18(5): 693-700.
doi: 10.1016/S0167-9457(99)00026-3
[33] BIRRELL S A, HASLAM R A. The effect of load distribution within military load carriage systems on the kinetics of human gait[J]. Applied Ergonomics, 2010, 41(4): 585-590.
doi: 10.1016/j.apergo.2009.12.004 pmid: 20060096
[34] LLOYD R, COOKE C B. Kinetic changes associated with load carriage using two rucksack designs[J]. Ergonomics, 2000, 43(9): 1331-1341.
pmid: 11014755
[35] BIRRELL S A, HOOPER R H, HASLAM R A. The effect of military load carriage on ground reaction forces[J]. Gait & Posture, 2007, 26(4): 611-614.
doi: 10.1016/j.gaitpost.2006.12.008
[36] CHANG W R, CHANG C C, MATZ S, et al. A methodology to quantify the stochastic distribution of friction coefficient required for level walking[J]. Applied Ergonomics, 2008, 39(6): 766-771.
doi: 10.1016/j.apergo.2007.11.003
[37] BARNETT LIPSEY R. ″Slip and Fall″ theory: extreme order statistics[J]. International Journal of Occupational Safety & Ergonomics, 2002, 8(2): 135-158.
[38] MURRAY S L, SIMON Y L, SHENG H. The effects of chemical protective suits on human performance[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(6): 774-779.
doi: 10.1016/j.jlp.2011.06.001
[39] O’HEARN B E, BENSEL C K, POLCYN A F. Biomechanical analyses of body movement and locomotion as affected by clothing and footwear for cold weather climates[R]. U.S. Army Research, Development and Engineering Command Natick Soldier Center, 2005:1-6.
[40] PARK H, TREJO H, MILES M, et al. Impact of firefighter gear on lower body range of motion[J]. International Journal of Clothing Science and Technology, 2015, 27(2): 315-334.
doi: 10.1108/IJCST-01-2014-0011
[41] LIN X, ZHAI L, ZHANG M, et al. Ergonomic evaluation of protective clothing for earthquake disaster search and rescue team members[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 820-829.
doi: 10.1108/IJCST-11-2015-0124
[42] BOYD L, ROGERS T, DOCHERTY D, et al. Variability in performance on a work simulation test of physical fitness for firefighters[J]. Applied Physiology Nutrition Metabolism, 2015, 40(4): 364-370.
doi: 10.1139/apnm-2014-0281
[43] CHOU C, UMEZAKI S, SON S Y, et al. Effects of wearing trousers or shorts under firefighting protective clothing on physiological and subjective responses[J]. Journal of the Human-Environment System, 2009, 12(2): 63-71.
doi: 10.1618/jhes.12.63
[44] AN S K. Laboratory assessment of range of motion and pressure associated with female soldiers wearing a ballistic vest[D]. Stillwater Oklahoma: Oklahoma State University, 2010: 95-108.
[45] KIM S H, NEUSCHWANDER T B, MACIAS B R, et al. Upper extremity hemodynamics and sensation with backpack loads[J]. Applied Ergonomics, 2014, 45(3): 608-612.
doi: 10.1016/j.apergo.2013.08.005 pmid: 24075289
[46] MAO C P, MACIAS B R, HARGENS A R. Shoulder skin and muscle hemodynamics during backpack carri-age[J]. Applied Ergonomics, 2015, 51: 80-84.
doi: 10.1016/j.apergo.2015.04.006
[47] HADID A, KATZ I, HAKER T, et al. Effect of load carriage on upper limb performance[J]. Medicine & Science in Sports & Exercise, 2016, 49(5): 1006-1014.
[48] DUAN T, HUANG B, LI X, et al. Real-time indicators and influence factors of muscle fatigue in push-type work[J]. International Journal of Industrial Ergonomics, 2020, 80(2): 30-46.
[49] PISCIONE J, GAMET D. Effect of mechanical compression due to load carrying on shoulder muscle fatigue during sustained isometric arm abduction: an electromyographic study[J]. European Journal of Applied Physiology, 2006, 97(5): 573-581.
pmid: 16767438
[50] MATSUMOTO T, ITO K, MORITANI T. The relationship between anaerobic threshold and electromyographic fatigue threshold in college women[J]. European Journal of Applied Physiology and Occupational Physiology, 1991, 63(1): 1-5.
pmid: 1915324
[51] JAMES S, DAMIAN C, MATHEW B. Energy cost and knee extensor strength changes following multiple day military load carriage[J]. Applied Ergonomics, 2021, 97: 103503.
doi: 10.1016/j.apergo.2021.103503
[52] ROSE J D, MENDEL E, S. M W. Carrying and spine loading[J]. Ergonomics, 2013, 56(11): 1722-1732.
doi: 10.1080/00140139.2013.835870 pmid: 24073718
[53] QUESADA P M, MENGELKOCH L J, HALE R C, et al. Biomechanical and metabolic effects of varying backpack loading on simulated marching[J]. Ergonomics, 2000, 43(3): 293-309.
pmid: 10755654
[54] SHYMON S, HARGENS A R, MINKOFF L A, et al. Body posture and backpack loading: an upright magnetic resonance imaging study of the adult lumbar spine[J]. European Spine Journal, 2014, 23(7): 1407-1413.
doi: 10.1007/s00586-014-3247-5 pmid: 24619606
[55] CHOW H K, HIN K F, OU D, et al. Carry-over effects of backpack carriage on trunk posture and repositioning ability[J]. International Journal of Industrial Ergonomics, 2011, 41(5): 530-535.
doi: 10.1016/j.ergon.2011.04.001
[1] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[2] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[3] 陈 思 卢业虎 戴晓群 王敏. 高温液体及蒸汽防护服装防护性能研究进展[J]. 纺织学报, 2018, 39(05): 144-149.
[4] 王敏 李俊 李小辉. 燃烧假人在火场热防护服装研究中的应用[J]. 纺织学报, 2013, 34(3): 154-160.
[5] 张向辉;王云仪;李俊;张文斌. 防护服装结构设计对着装舒适性的影响[J]. 纺织学报, 2009, 30(06): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .