纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 22-28.doi: 10.13475/j.fzxb.20211001307
张天芸1,2(), 石小红1, 张乐1, 王富娟1, 谢依娜1, 杨亮1, 冉奋2
ZHANG Tianyun1,2(), SHI Xiaohong1, ZHANG Le1, WANG Fujuan1, XIE Yi'na1, YANG Liang1, RAN Fen2
摘要:
为实现凝胶电解质性能间的平衡,以氧化细菌纤维素为基体,分别采用3种阴离子类咪唑型离子液体与其实现离子交联,同时将丙烯酰胺在交联体中进行原位自由基聚合,制备细菌纤维素/聚丙烯酰胺双交联结构的凝胶聚合物电解质。其中阴离子类咪唑型离子液体分别是1-乙基-3-甲基咪唑四氟硼酸盐(EMIMBF4)、1-乙基-3-甲基咪唑六氟磷酸盐(EMIMPF6)和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐(EMIMTFSI),在构筑双交联结构凝胶聚合物电解质中起到了关键的协同作用。结果表明:在以EMIMBF4为协同剂时,制备的凝胶聚合物电解质具有最优的力学性能和离子电导率;断裂伸长率为38.36%,拉伸强度为175.25 kPa,离子电导率达到20.16 mS/cm。
中图分类号:
[1] |
CHEN G, LI Y, BICK M, et al. Smart textiles for electricity generation[J]. Chemical Reviews, 2020, 120(8): 3668-3720.
doi: 10.1021/acs.chemrev.9b00821 pmid: 32202762 |
[2] | 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165. |
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165. | |
[3] | FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1-31. |
[4] | 张金明, 张军. 基于纤维素的先进功能材料[J]. 高分子学报, 2010(12): 1376-1398. |
ZHANG Jinming, ZHANG Jun. Advanced functional materials based on cellulose[J]. Acta Polymerica Sinica, 2010(12): 1376-1398. | |
[5] | 张晶晶, 容建华, 李文迪, 等. 细菌纤维素/聚丙烯酰胺水凝胶的制备及性能表征[J]. 高分子学报, 2011(6): 602-607. |
ZHANG Jingjing, RONG Jianhua, LI Wendi, et al. Preparation and characterization of bacterial cellulose/polyacrylamide hydrogels[J]. Acta Polymerica Sinica, 2011(6): 602-607. | |
[6] | LI Xiaolong, YUAN Libei, LIU Rong, et al. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors[J]. Advanced Energy Materials, 2021, 11(12): 1-11. |
[7] |
ARMAND M, ENDRES F, MACFARLANE D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629.
doi: 10.1038/nmat2448 pmid: 19629083 |
[8] | 于学文, 顾应展, 乔志军, 等. Emim-TFSI基电解液用于超级电容器的高温性能研究[J]. 电源技术, 2020, 353(2): 73-77. |
YU Xuewen, GU Yingzhan, QIAO Zhijun, et al. Study on high temperature performance of EMIM-TFSI-based electrolyte used in supercapacitor[J]. Power Supply Technology, 2020, 353(2): 73-77. | |
[9] |
KIM S S, JEON J H, KIM H I, et al. High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-Oxidized bacterial cellulose[J]. Advanced Functional Materials, 2015, 25(23): 3560-3570.
doi: 10.1002/adfm.201500673 |
[10] | 张天芸. 基于细菌纤维素纤维的电化学储能材料及器件[D]. 上海: 东华大学, 2018: 22-23. |
ZHANG Tianyun. Bacterial cellulose fiber-based electrochemical energy storage materials and devices[D]. Shanghai: Donghua University, 2018: 22-23. | |
[11] | 刘川渟. 纤维素及纤维素衍生物复合电池隔膜的制备与性能研究[D]. 北京: 北京理工大学, 2016: 11-43. |
LIU Chuanting. Preparation and properties of cellulose and cellulose derivatives composite cell diaphragm[D]. Beijing: Beijing Institute of Technology, 2016: 11-43. | |
[12] | 梁用智. 基于离子交联的高强度水凝胶的制备[D]. 杭州: 浙江大学, 2019: 1-59. |
LIANG Yongzhi. Preparation of high strength hydrogel based on ion crosslinking[D]. Hangzhou: Zhejiang University, 2019: 1-59. | |
[13] |
ZHANG XIONGFEI, MA XIAOFENG, HOU TING, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels[J]. Angewandte Chemie International Edition, 2019, 58(22): 7366-7370.
doi: 10.1002/anie.201902578 |
[14] | 李琳, 赵帅, 胡红旗. 纤维素溶解体系的研究进展[J]. 纤维素科学与技术, 2009(2): 72-78. |
LI Lin, ZHAO Shuai, HU Hongqi. Research progress of cellulose dissolution system[J]. Cellulose Science and Technology, 2009(2): 72-78. | |
[15] |
MCEWEN A B, HELEN L N, LECOMPTE K, et al. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applica-tions[J]. Journal of the Electrochemical Society, 1999, 146(5): 1687-1695.
doi: 10.1149/1.1391827 |
[16] | 卢芸, 孙庆丰, 于海鹏, 等. 离子液体中的纤维素溶解、再生及材料制备研究进展[J]. 有机化学, 2010, 30(10): 1593-1602. |
LU Yun, SUN Qingfeng, YU Haipeng, et al. Research progress on dissolution, regeneration and preparation of cellulose in ionic liquids[J]. Chinese Journal of Organic Chemistry, 2010, 30(10): 1593-1602. | |
[17] | 章正熙, 高旭辉, 杨立. $BF_{4}^{-}$和TFSI-系列室温离子液体绿色电解液的电化学性能[J]. 科学通报, 2005(15): 1584-1588. |
ZHANG Zhengxi, GAO Xuhui, YANG Li. Electrochemical properties of $BF_{4}^{-}$ and TFSI- series ionic liquid green electrolytes at room temperature[J]. Chinese Science Bulletin, 2005(15): 1584-1588. | |
[18] | 慕竣屹, 金振兴, 蔡克迪. 六氟磷酸电解液在超级电容器中的电化学性能研究[J]. 渤海大学学报(自然科学版), 2011, 32(1): 42-46. |
MU Junyi, JIN Zhenxing, CAI Kedi. Electrochemical properties of hexafluorophosphoric acid electrolyte in supercapacitors[J]. Journal of Bohai University (Natural Science Edition), 2011, 32(1): 42-46. |
[1] | 张晓程, 周彦, 田卫国, 乔昕, 贾锋伟, 许丽丽, 张金明, 张军. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(07): 1-8. |
[2] | 梁姣姣, 汪菁晶, 夏于旻, 朱新远, 闫冰, 孙利明, 王燕萍, 何勇, 王依民. 基于聚离子液体的常压阴离子可染聚丙烯纤维制备及其性能[J]. 纺织学报, 2022, 43(07): 17-21. |
[3] | 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20. |
[4] | 袁久刚, 季吉, 薛琪, 姜哲, 范雪荣, 高卫东. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(01): 35-39. |
[5] | 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(01): 21-25. |
[6] | 王宗乾 杨海伟 汤立洋 李长龙. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11): 14-19. |
[7] | 董建成 葛孝栋 王清清 魏取福. 卟啉接枝细菌纤维素的制备及其光敏抗菌性能[J]. 纺织学报, 2018, 39(11): 20-26. |
[8] | 刘新华 李永 储兆洋 杨旭 王翠娥. 细菌纤维素气凝胶接枝甲基丙烯酸二甲氨乙酯的制备[J]. 纺织学报, 2018, 39(03): 1-6. |
[9] | 黄婕妤 吕鹏飞 姚壹鑫 魏取福. 细菌纤维素/涤纶非织造布自编织复合材料的制备及其性能[J]. 纺织学报, 2018, 39(02): 126-131. |
[10] | 曹机良 孟春丽 曹毅 闫凯 吴宁杰 王潮霞. 烷基咪唑类双子型离子液体对涤纶织物的碱减量处理[J]. 纺织学报, 2018, 39(01): 79-83. |
[11] | 吴焕岭. 载药再生细菌纤维素纤维的制备及其表征[J]. 纺织学报, 2017, 38(05): 14-18. |
[12] | 李长龙 汤立洋 王宗乾 汪小翠. 不同体系下羽毛绒的溶解性能及光谱特性[J]. 纺织学报, 2017, 38(04): 27-31. |
[13] | 盛杰侦 闫新 秦俊霞 曹机良. 不对称咪唑类离子液体对腈纶缓染性能的影响[J]. 纺织学报, 2016, 37(10): 68-72. |
[14] | 叶晋浦 朱庆松 李晓俊 肖长发. 二醋酸纤维素与増塑剂熔融体系的制备与表征[J]. 纺织学报, 2016, 37(09): 6-11. |
[15] | 徐素梅 哈丽丹买买提 米娜瓦尔乌买尔. 月桂酸纤维素酯的酰化法制备及其成膜性能[J]. 纺织学报, 2016, 37(01): 11-15. |
|