纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 9-15.doi: 10.13475/j.fzxb.20210806207
吴焕岭1(), 谢周良1, 汪阳1, 孙万超1, 康正芳2, 徐国华3
WU Huanling1(), XIE Zhouliang1, WANG Yang1, SUN Wanchao1, KANG Zhengfang2, XU Guohua3
摘要:
为改善聚乳酸-羟基乙酸共聚物(PLGA)基药物载体的降解性能和释药性能,以PLGA为基材,以胶原蛋白(Col)为改性材料,以阿霉素(DOX)为药物模型,利用静电纺丝技术制备得到PLGA/Col/DOX纳米纤维膜,探究了胶原蛋白对其亲疏水性、体外降解性、释药性能及细胞相容性的影响。结果表明:PLGA与Col以3:1的质量比复合制得的纳米纤维膜性能最佳;经胶原蛋白复合改性后,纳米纤维膜的接触角由未改性的93.5°降至51.5°,亲水性显著提高;胶原蛋白改性可大幅提高PLGA的降解性,改性后纳米纤维膜30 d的质量损失速率由未改性的3.5%增加至19%,且改性后纳米载药纤维膜的药物释放速率和细胞相容性明显提高,有利于细胞黏附增殖。
中图分类号:
[1] |
魏志勇, 刘炼, 张萌, 等. 聚乳酸,乳酸乙醇酸共聚物的制备及其体外降解[J]. 生物医学工程学杂志, 2008, 25(1) : 122-126.
pmid: 18435272 |
WEI Zhiyong, LIU Lian, ZHANG Meng, et al. Preparation and in-vitro degradation of polylactide and poly(L-lactide-co-glycolide)[J]. Journal of Biomedical Engineering, 2008, 25(1) : 122-126.
pmid: 18435272 |
|
[2] | 王菲, 周洪, 王小鹏, 等. 对生物可吸收聚乙丙交酯体外降解特性和强度维持的研究[J]. 口腔医学, 2008, 28(10) : 540-542. |
WANG Fei, ZHOU Hong, WANG Xiaopeng, et al. Study on in vitro degradation characteristics and strength maintenance of bioabsorbable poly (ethylene lactide)[J]. Stomatology, 2008, 28(10) : 540-542. | |
[3] |
CHAUDHURI O, COOPER-WHITE J, JANMEY P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584: 535-546.
doi: 10.1038/s41586-020-2612-2 |
[4] |
VISAVELIYA N R, KHLER J M. Emerging structural and interfacial features of particulate polymers at the nanoscale[J]. Langmuir, 2020, 36(44): 13125-13143.
doi: 10.1021/acs.langmuir.0c02566 pmid: 33112618 |
[5] |
OGANOV A R, PICKARD C J, ZHU Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4: 331-348.
doi: 10.1038/s41578-019-0101-8 |
[6] |
NIIYAMA E, UTO K, EBARA M, et al. Electrospun PCL-PCL polyblend nanofibers with high-and low-molecular weight for controlled degradation[J]. Chemistry Letters, 2019, 48(7) : 623-626.
doi: 10.1246/cl.190100 |
[7] |
HU J, SONG Y, ZHANG C, et al. Highly aligned electrospun collagen/PCL surgical sutures with sustained release of growth factors for wound regeneration[J]. ACS Applied Bio Materials, 2020, 3(2) : 965-976.
doi: 10.1021/acsabm.9b01000 |
[8] |
ZHAO X, LIU L, WANG J, et al. In vitro vascularization of a combined system based on a 3D printing technique[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(10) : 833-842.
doi: 10.1002/term.1863 pmid: 24399638 |
[9] | KWAN P H, WONIL J, KANG G B, et al. Collagen/poly(D, L-lactic-co-glycolic acid) composite fibrous scaffold prepared by independent nozzle control multi-electrospinning apparatus for dura repair[J]. Journal of Industrial and Engineering Chemistry, 2018(66) : 430-437. |
[10] | KWAK S, HAIDER A, GUPTA K C, et al. Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engi-neering[J]. Nanoscale Research Letters, 2016(11) : 323-338. |
[11] | 乔小银. 生物3D打印的载药支架用于乳腺癌治疗的研究[D]. 长沙: 湖南大学, 2020: 1-4. |
QIAO Xiaoyin. 3D printed drug-loaded stent for the treatment of breast cancer[D]. Changsha: Hunan University, 2002: 1-4. | |
[12] |
CHEN M, LIN S, WANG H S. Fabrication of DOX and CPT dual-drug loaded PLGA nanofibrous mats for cancer treatment[J]. Journal of Controlled Release, 2015. DOI:10.1016/j.jconrel.2015.05.126.
doi: 10.1016/j.jconrel.2015.05.126 |
[13] |
WANG J, HELDER L, SHAO J, et al. Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: effect of polymer end groups[J]. International Journal of Pharmaceutics, 2019, 564: 1-9.
doi: S0378-5173(19)30285-6 pmid: 30978487 |
[14] | 王利君, 熊杰, 骆菁菁, 等. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(5) : 8-13. |
WANG Lijun, XIONG Jie, LUO Jingjing, et al. Structure and properties of polylactic acid-polycaprolactone/silk fibroin composite nanofibrous scaffolds[J]. Journal of Textile Research, 2017, 38(5) : 8-13. | |
[15] |
FANG R, ZHANG E, XU L, et al. Electrospun PCL-PLA/HA based nanofibers as scaffold for osteoblast-like cells[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(11) : 7747-7751.
doi: 10.1166/jnn.2010.2831 |
[16] | 吴焕岭, 孙万超, 王乃涛, 等. 一种PLGA纳米载药纤维膜及其制备方法: 202210020816.5[P]. 2022-05-13. |
WU Huanling, SUN Wanchao, WANG Naitao, et al. The invention relates to the preparation method of a PLGA-based drug loading nanofibrous membrane: 202210020816.5[P]. 2022-05-13. | |
[17] | 朱㻉瑶, 赵振国. 界面化学基础[M]. 北京: 化学工业出版社, 1996: 219-220. |
ZHU Buyao, ZHAO Zhenguo. Interfacial chemistry basis[M]. Beijing: Chemical Industry Press, 1996: 219-220. | |
[18] | 陈静涛, 赵玉萍, 徐政, 等. 重组胶原蛋白与牛源Ⅰ型胶原蛋白红外光谱研究[J]. 材料导报, 2008, 22(3) : 119-121. |
CHEN Jingtao, ZHAO Yuping, XU Zheng, et al. FT-IR spectrometric study of reconbinant collagen and borine tendon[J]. Materials Reports, 2008, 22(3): 119-121. | |
[19] | 吴焕岭. 基于聚丙烯腈的差异化多功能长丝纤维的探究[J]. 丝绸, 2021, 58(3) : 25-29. |
WU Huangling. Research on a differentiated and multifunctional filament based on polyacrylonitrile[J]. Journal of Silk, 2021, 58(3) : 25-29. | |
[20] | HANKKARAINEN M, ALBERTSSON A C, KARLSSON S. Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo-and copolymers of PLA and PGA[J]. Polymer Degradation & Stability, 1996, 52(3) : 283-291. |
[21] |
BURKERSRODA F V, SCHEDL L, GPFERICH A. Why degradable polymers undergo surface erosion or bulk erosion[J]. Biomaterials, 2002, 23(21) : 4221-4231.
doi: 10.1016/s0142-9612(02)00170-9 pmid: 12194525 |
[22] | HOFMANN D, ENTRIALGO-CASTANO M, KRATZ K, et al. Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials[J]. Advanced Materials, 2009, 21 : 1-9. |
[1] | 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21. |
[2] | 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21. |
[3] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[4] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[5] | 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215. |
[6] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[7] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[8] | 宋子钰, 赵居阳, 秦玥, 黄小睿, 高晶, 王璐. 伤口修复中抑制瘢痕用功能敷料的研究进展[J]. 纺织学报, 2022, 43(07): 193-199. |
[9] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
[10] | 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56. |
[11] | 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184. |
[12] | 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69. |
[13] | 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76. |
[14] | 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85. |
[15] | 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46. |
|