纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 9-15.doi: 10.13475/j.fzxb.20210806207

• 纤维材料 • 上一篇    下一篇

胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能

吴焕岭1(), 谢周良1, 汪阳1, 孙万超1, 康正芳2, 徐国华3   

  1. 1.盐城工学院 纺织服装学院, 江苏 盐城 224051
    2.盐城市权航科技有限公司, 江苏 盐城 224056
    3.盐城创能新屏蔽材料有限公司, 江苏 盐城 224043
  • 收稿日期:2021-08-16 修回日期:2022-05-22 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 吴焕岭
  • 基金资助:
    江苏省农业科技自主创新资金项目(CX(21)3086);盐城工学院校级科研资助项目(xjr2020042);江苏省高等学校大学生创新创业训练计划项目(2022103050062);盐城工学院产学研合作项目(2022040414)

Preparation and properties of modified poly(lactide-co-glycolide) nano-scaled drug delivery system by collagen

WU Huanling1(), XIE Zhouliang1, WANG Yang1, SUN Wanchao1, KANG Zhengfang2, XU Guohua3   

  1. 1. College of Textile & Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
    2. Yancheng Quanhang Technology Co., Ltd., Yancheng, Jiangsu 224056, China
    3. Yancheng Chuangneng New Shielding Material Co., Ltd., Yancheng, Jiangsu 224043, China
  • Received:2021-08-16 Revised:2022-05-22 Published:2022-11-15 Online:2022-12-26
  • Contact: WU Huanling

摘要:

为改善聚乳酸-羟基乙酸共聚物(PLGA)基药物载体的降解性能和释药性能,以PLGA为基材,以胶原蛋白(Col)为改性材料,以阿霉素(DOX)为药物模型,利用静电纺丝技术制备得到PLGA/Col/DOX纳米纤维膜,探究了胶原蛋白对其亲疏水性、体外降解性、释药性能及细胞相容性的影响。结果表明:PLGA与Col以3:1的质量比复合制得的纳米纤维膜性能最佳;经胶原蛋白复合改性后,纳米纤维膜的接触角由未改性的93.5°降至51.5°,亲水性显著提高;胶原蛋白改性可大幅提高PLGA的降解性,改性后纳米纤维膜30 d的质量损失速率由未改性的3.5%增加至19%,且改性后纳米载药纤维膜的药物释放速率和细胞相容性明显提高,有利于细胞黏附增殖。

关键词: 静电纺丝, 聚乳酸-羟基乙酸, 胶原蛋白, 药物传递系统, 降解性

Abstract:

In order to improve the slow degradation rate of poly(lactic acid-glycolic acid copolymer) (PLGA) and improve the drug release performances of PLGA-based drug loading materials, collagen (Col) as the modified material and doxorubicin (DOX) as the drug model, PLGA/Col/DOX nanofibrous membranes were prepared by electrostatic spinning technology with PLGA as the substrate, which can be used as sustained-release material for local tumor treatment. Modification effect of collagen on the hydrophilicity-hydrophobicity, in-vitro degradation, drug release performance and cytocompatibility of PLGA-based drug delivery system was investigated. The results showed that the properties of PLGA/Col nanofibrous membranes with a mass ratio of 75/25 were the best. After modification by collagen, the contact angle of the nanofibrous membrane decreased from 93.5°to 51.5°, indicating significant improvement of hydrophilicity. In-vitro degradation experiments showed that the 30-day weight loss rates of the nanofibers before and after collagen modification were 3.5% and 19% respectively, suggesting that the addition of collagen could greatly improve the degradation of PLGA. In-vitro drug release experiments showed that the drug release rate was significantly increased after modification, which could effectively improve the defects of low drug release rate and low drug release amount of PLGA. Cytotoxicity experiments showed that collagen could improve the biocompatibility of PLGA and facilitate cell adhesion and proliferation.

Key words: electrospinning, poly(lactide-co-glycolide), collagen protein, drug delivery system, degradability

中图分类号: 

  • TQ342.87

表1

纺丝液的复配组分"

样品名称 DOX体积/mL Col体积/mL PLGA体积/ mL
PLGA 0 0 10.0
PLGA/Col 0 2.5 7.5
PLGA/DOX 1 0 10.0
PLGA/Col/DOX 1 2.5 7.5

图1

不同纳米纤维膜的扫描电镜照片"

表2

不同纳米纤维膜的力学性能"

样品名称 拉伸强度/MPa 断裂伸长率/% 弹性模量/MPa
PLGA 5.22 44.7 180.3
PLGA/Col 5.02 63.6 133.4
PLGA/Col/DOX 3.91 46.5 114.6

图2

不同纳米纤维膜的水接触角"

图3

不同材料的红外光谱图"

图4

不同纳米纤维膜的热重曲线"

图5

PLGA、PLGA/Col纳米纤维膜降解30 d后的质量损失率"

图6

PLGA/DOX、PLGA/Col/DOX载药纳米纤维膜的药物释放曲线"

图7

L929细胞在不同纳米纤维膜上的黏附增殖能力"

[1] 魏志勇, 刘炼, 张萌, 等. 聚乳酸,乳酸乙醇酸共聚物的制备及其体外降解[J]. 生物医学工程学杂志, 2008, 25(1) : 122-126.
pmid: 18435272
WEI Zhiyong, LIU Lian, ZHANG Meng, et al. Preparation and in-vitro degradation of polylactide and poly(L-lactide-co-glycolide)[J]. Journal of Biomedical Engineering, 2008, 25(1) : 122-126.
pmid: 18435272
[2] 王菲, 周洪, 王小鹏, 等. 对生物可吸收聚乙丙交酯体外降解特性和强度维持的研究[J]. 口腔医学, 2008, 28(10) : 540-542.
WANG Fei, ZHOU Hong, WANG Xiaopeng, et al. Study on in vitro degradation characteristics and strength maintenance of bioabsorbable poly (ethylene lactide)[J]. Stomatology, 2008, 28(10) : 540-542.
[3] CHAUDHURI O, COOPER-WHITE J, JANMEY P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584: 535-546.
doi: 10.1038/s41586-020-2612-2
[4] VISAVELIYA N R, KHLER J M. Emerging structural and interfacial features of particulate polymers at the nanoscale[J]. Langmuir, 2020, 36(44): 13125-13143.
doi: 10.1021/acs.langmuir.0c02566 pmid: 33112618
[5] OGANOV A R, PICKARD C J, ZHU Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4: 331-348.
doi: 10.1038/s41578-019-0101-8
[6] NIIYAMA E, UTO K, EBARA M, et al. Electrospun PCL-PCL polyblend nanofibers with high-and low-molecular weight for controlled degradation[J]. Chemistry Letters, 2019, 48(7) : 623-626.
doi: 10.1246/cl.190100
[7] HU J, SONG Y, ZHANG C, et al. Highly aligned electrospun collagen/PCL surgical sutures with sustained release of growth factors for wound regeneration[J]. ACS Applied Bio Materials, 2020, 3(2) : 965-976.
doi: 10.1021/acsabm.9b01000
[8] ZHAO X, LIU L, WANG J, et al. In vitro vascularization of a combined system based on a 3D printing technique[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(10) : 833-842.
doi: 10.1002/term.1863 pmid: 24399638
[9] KWAN P H, WONIL J, KANG G B, et al. Collagen/poly(D, L-lactic-co-glycolic acid) composite fibrous scaffold prepared by independent nozzle control multi-electrospinning apparatus for dura repair[J]. Journal of Industrial and Engineering Chemistry, 2018(66) : 430-437.
[10] KWAK S, HAIDER A, GUPTA K C, et al. Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engi-neering[J]. Nanoscale Research Letters, 2016(11) : 323-338.
[11] 乔小银. 生物3D打印的载药支架用于乳腺癌治疗的研究[D]. 长沙: 湖南大学, 2020: 1-4.
QIAO Xiaoyin. 3D printed drug-loaded stent for the treatment of breast cancer[D]. Changsha: Hunan University, 2002: 1-4.
[12] CHEN M, LIN S, WANG H S. Fabrication of DOX and CPT dual-drug loaded PLGA nanofibrous mats for cancer treatment[J]. Journal of Controlled Release, 2015. DOI:10.1016/j.jconrel.2015.05.126.
doi: 10.1016/j.jconrel.2015.05.126
[13] WANG J, HELDER L, SHAO J, et al. Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: effect of polymer end groups[J]. International Journal of Pharmaceutics, 2019, 564: 1-9.
doi: S0378-5173(19)30285-6 pmid: 30978487
[14] 王利君, 熊杰, 骆菁菁, 等. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(5) : 8-13.
WANG Lijun, XIONG Jie, LUO Jingjing, et al. Structure and properties of polylactic acid-polycaprolactone/silk fibroin composite nanofibrous scaffolds[J]. Journal of Textile Research, 2017, 38(5) : 8-13.
[15] FANG R, ZHANG E, XU L, et al. Electrospun PCL-PLA/HA based nanofibers as scaffold for osteoblast-like cells[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(11) : 7747-7751.
doi: 10.1166/jnn.2010.2831
[16] 吴焕岭, 孙万超, 王乃涛, 等. 一种PLGA纳米载药纤维膜及其制备方法: 202210020816.5[P]. 2022-05-13.
WU Huanling, SUN Wanchao, WANG Naitao, et al. The invention relates to the preparation method of a PLGA-based drug loading nanofibrous membrane: 202210020816.5[P]. 2022-05-13.
[17] 朱㻉瑶, 赵振国. 界面化学基础[M]. 北京: 化学工业出版社, 1996: 219-220.
ZHU Buyao, ZHAO Zhenguo. Interfacial chemistry basis[M]. Beijing: Chemical Industry Press, 1996: 219-220.
[18] 陈静涛, 赵玉萍, 徐政, 等. 重组胶原蛋白与牛源Ⅰ型胶原蛋白红外光谱研究[J]. 材料导报, 2008, 22(3) : 119-121.
CHEN Jingtao, ZHAO Yuping, XU Zheng, et al. FT-IR spectrometric study of reconbinant collagen and borine tendon[J]. Materials Reports, 2008, 22(3): 119-121.
[19] 吴焕岭. 基于聚丙烯腈的差异化多功能长丝纤维的探究[J]. 丝绸, 2021, 58(3) : 25-29.
WU Huangling. Research on a differentiated and multifunctional filament based on polyacrylonitrile[J]. Journal of Silk, 2021, 58(3) : 25-29.
[20] HANKKARAINEN M, ALBERTSSON A C, KARLSSON S. Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo-and copolymers of PLA and PGA[J]. Polymer Degradation & Stability, 1996, 52(3) : 283-291.
[21] BURKERSRODA F V, SCHEDL L, GPFERICH A. Why degradable polymers undergo surface erosion or bulk erosion[J]. Biomaterials, 2002, 23(21) : 4221-4231.
doi: 10.1016/s0142-9612(02)00170-9 pmid: 12194525
[22] HOFMANN D, ENTRIALGO-CASTANO M, KRATZ K, et al. Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials[J]. Advanced Materials, 2009, 21 : 1-9.
[1] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[2] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[3] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[4] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[5] 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
[6] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[7] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[8] 宋子钰, 赵居阳, 秦玥, 黄小睿, 高晶, 王璐. 伤口修复中抑制瘢痕用功能敷料的研究进展[J]. 纺织学报, 2022, 43(07): 193-199.
[9] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[10] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[11] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[12] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[13] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[14] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[15] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .