纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 22-28.doi: 10.13475/j.fzxb.20210808608
WANG Hongjie1,2, YAO Lan1, WANG He1,3(), ZHANG Zhong1
摘要:
为实现废弃医用口罩在储能领域中的高值化应用,采用镀银和涂炭方法对一次性医用口罩的中间层熔喷非织造布表面进行处理制备双电层电极,最后组装成超级电容器器件。分别采用循环伏安法、恒电流充放电法和交流阻抗法测试熔喷非织造布电极和所组成器件的电化学性能。结果表明:当电流密度为1 A/g时,所得电极比电容可达298 F/g,在电流密度为20 A/g下其比电容为224 F/g,展现出较高的倍率性能(75%),电极的电荷转移内阻和等效串联内阻分别为0.86和0.15 Ω;在功率密度为125 W/kg下,超级电容器器件的能量密度达到9.7 W·h/kg,此外经过10 000次充放电后,器件的比电容保持率高达99.8%,展现出优异的循环稳定性。
中图分类号:
[1] | 赵博. PP/PE双组份熔喷医用非织造布基本性能的测试及分析[J]. 聚酯工业, 2020, 33(6): 4-10. |
ZHAO Bo. Test and analysis of basic properties of PP/PE two component melt blown medical nonwovens[J]. Polyester Industry, 2020, 33(6): 4-10. | |
[2] | 夏磊, 程博闻, 西鹏, 等. 闪蒸纺纳微米纤维非织造技术的研究进展[J]. 纺织学报, 2020, 41(8): 166-171. |
XIA Lei, CHENG Bowen, XI Peng, et al. Research progress of flash spinning nano/micro-fiber nonwoven technology[J]. Journal of Textile Research, 2020, 41(8): 166-171. | |
[3] | 曹豫新, 刘晓亮, 张玉梅. 医疗用非织造布纺黏层用聚丙烯的性能及应用[J]. 合成纤维, 2015, 44(1): 1-3. |
CAO Yuxin, LIU Xiaoliang, ZHANG Yumei. The property and application of polypropylene for medical nonwoven spunbond layer[J]. Synthetic Fiber in China, 2015, 44(1): 1-3. | |
[4] | 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机理及其影响因素的研究进展[J]. 高分子通报, 2020, 8: 1-22. |
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Chinese Polymer Bulletin, 2020, 8: 1-22. | |
[5] | 陶永亮, 陈曦, 向科军. 聚丙烯材料在医用口罩中的应用[J]. 橡塑技术与装备, 2020, 46(8): 33-36. |
TAO Yongliang, CHEN Xi, XIANG Kejun. Application of polypropylene material in medical mask[J]. China Rubber/Plastics Technology and Equipment, 2020, 46(8): 33-36. | |
[6] |
LI Zengqing, MA Yulong, WANG Lihong, et al. Multidimensional hierarchical fabric-based supercapacitor with bionic fiber microarrays for smart wearable electronic textiles[J]. ACS Applied Materials Interfaces, 2019, 11(49): 46278-46285.
doi: 10.1021/acsami.9b19078 |
[7] |
LI Zengqing, LI Ming, FAN Qiang, et al. Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications[J]. ACS Applied Materials Interfaces, 2021, 13(12):14778-14785.
doi: 10.1021/acsami.1c02615 |
[8] |
LI Ming, LI Zengqing, YE Xiaorui, et al. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles[J]. ACS Applied Materials Interfaces, 2021, 13(14): 17110-17117.
doi: 10.1021/acsami.1c02329 |
[9] |
CHEN Mingfeng, YU Dan, ZHENG Xiaozhong, et al. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors[J]. Journal of Energy Storage, 2019, 21: 105-112.
doi: 10.1016/j.est.2018.11.017 |
[10] |
SONG Ziyang, ZHU Dazhang, LI Liangchun, et al. Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapa-citor[J]. Journal of Materials Chemistry A, 2019, 7(3): 1177-1186.
doi: 10.1039/C8TA10158B |
[11] | 王赫, 王洪杰, 王闻宇, 等. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 材料导报, 2018, 32(5): 730-734. |
WANG He, WANG Hongjie, WANG Wenyu, et al. Research progress in polyacrylonitrile (PAN) based carbon nanofibers electrode materials for supercapaci-tor[J]. Materials Reports, 2018, 32(5): 730-734. | |
[12] |
WANG He, WANG Wenyu, WANG Hongjie, et al. High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer[J]. ACS Applied Energy Materials, 2018, 1(2): 431-439.
doi: 10.1021/acsaem.7b00083 |
[13] | 郝欢欢, 刘晶冰, 李坤威, 等. 拉曼光谱表征石墨烯结构的研究进展[J]. 材料工程, 2018, 46(5): 1-10. |
HAO Huanhuan, LIU Jingbing, LI Kunwei, et al. Research progress on characterization of graphene structure by Raman spectroscopy[J]. Journal of Materials Engineering, 2018, 46(5): 1-10. | |
[14] | 肖霄, 吴镝, 马小茗, 等. 等规聚丙烯结晶谱带二维红外光谱学研究[J]. 光散射学报, 2015, 27(2): 195-200. |
XIAO Xiao, WU Di, MA Xiaoming, et al. Two-dimensional infrared spectroscopy study of isotaetic polyprolene crystal band[J]. Chinese Journal of Light Scattering, 2015, 27(2): 195-200. | |
[15] | 王赫, 王洪杰, 阮芳涛, 等. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(1): 22-29. |
WANG He, WANG Hongjie, Ruan Fangtao, et al. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin[J]. Journal of Textile Research, 2021, 42(1): 22-29. |
[1] | 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12): 197-202. |
[2] | 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40. |
[3] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
[4] | 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80. |
[5] | 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16. |
[6] | 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63. |
[7] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[8] | 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126. |
[9] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[10] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[11] | 王霁龙, 刘岩, 景媛媛, 许庆丽, 钱祥宇, 张义红, 张坤. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165. |
[12] | 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106. |
[13] | 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165. |
[14] | 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/石墨烯/棉织物复合电极的制备及其电化学性能[J]. 纺织学报, 2020, 41(01): 96-101. |
[15] | 赵金洋, 孙窈, 张鑫, 张悦悦, 赵浩阅, 夏鑫. 锡/碳纳米纤维锂电负极材料形貌结构再造及其机制[J]. 纺织学报, 2019, 40(08): 7-13. |
|