纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 82-87.doi: 10.13475/j.fzxb.20211108006

• 染整与化学品 • 上一篇    下一篇

罗布麻微生物脱胶的菌种筛选与工艺优化

程芬1, 张兴群1,2, 王云龙1, 王颖1()   

  1. 1.新疆大学 纺织与服装学院, 新疆 乌鲁木齐 830046
    2.东华大学 生物与医学工程学院, 上海 201620
  • 收稿日期:2021-11-17 修回日期:2022-07-23 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 王颖
  • 作者简介:程芬(1995—),女,硕士生。主要研究方向为纺织生物技术与生物医用材料。
  • 基金资助:
    国家自然科学基金项目(51863020);天池博士计划项目(042312060);新疆大学博士科研启动基金项目(2019720001)

Optimizing microorganism degumming process of apocynum and bacterial screening

CHENG Fen1, ZHANG Xingqun1,2, WANG Yunlong1, WANG Ying1()   

  1. 1. College of Textile and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
    2. College of Biological Sciences and Medical Engineering, Donghua University, Shanghai 201620, China
  • Received:2021-11-17 Revised:2022-07-23 Published:2022-12-15 Online:2023-01-06
  • Contact: WANG Ying

摘要:

为提高罗布麻微生物脱胶效率,采用透明圈法、DNS比色法以及16S rRNA分子鉴定等方法从新疆乌鲁木齐南山野生麻生长区土壤中筛选优势脱胶菌株,并设计正交试验将所筛优势菌株用于优化新疆罗布麻微生物脱胶工艺参数。试验结果表明:所筛7株菌具有较高果胶酶活、木聚糖酶活,低纤维素酶活,适用于罗布麻微生物脱胶的实际应用;7菌种主要为芽孢杆菌属,此外还有肠杆菌属、克雷伯菌属和泛菌属;在脱胶液pH值为7,浴比为1∶40,摇床转速为90 r/min的最优脱胶工艺参数下,最佳脱胶方式为7菌系复合脱胶,脱胶时残胶率可降至30.45%,脱胶效果改善,同时菌株之间形成稳定的脱胶菌群,脱胶时菌种之间的协同作用、拮抗作用会影响菌群的脱胶能力。

关键词: 罗布麻, 菌种筛选, 酶活, 微生物脱胶, 脱胶工艺

Abstract:

In order to improve the efficiency of apocynum degumming, dominant degumming strains was screened from the soil of the wild hemp growth area of Urumqi, Xinjiang using the transparent zones method, DNS colorimetry method and 16S rRNA sequencing. The superior degumming strains were used to optimize the microbial degumming process of apocynum by the orthogonal experiment designed in this study. The experimental results show that seven dominant degumming strains with higher pectinase, xylanase and low cellulase are theoretically suitable for practical applications of apocynum degumming, which belong to four genera including Bacillus, Enterobacter, Klebsiella and Pantoea. The optimal parameters optimized by orthogonal tests are initial pH 7 of the degumming solution, bath ratio of 1:40 and shaker speed of 90 r/min. Using the optimization process parameters, the residual gum rate of complex bacteria can be reduced to 30.45%, the degumming effect is improved and thus the best method is degumming with 7 strains, because a stable degumming colony is formed between strains among which the synergism and antagonism may affect the degumming ability.

Key words: apocynum, bacterial screening, enzyme activity, microbial degumming, degumming process

中图分类号: 

  • TS192.5

表1

糖标液配制"

试管号 糖标液体积 去离子水体积 DNS体积
1 0.0 2.0 2.0
2 0.2 1.8 2.0
3 0.4 1.6 2.0
4 0.5 1.5 2.0
5 0.6 1.4 2.0
6 0.7 1.3 2.0
7 0.8 1.2 2.0
8 1.0 1.0 2.0

表2

正交试验因素水平表"

水平 A
摇床转速/(r·min-1)
B
pH值
C
浴比
1 0 7 1∶30
2 90 8 1∶40
3 150 9 1∶50

图1

菌株刚果红HC值"

表3

酶活测定结果"

菌株编号 果胶酶活 木聚糖酶活 纤维素酶酶活
Y8 117.565 9.390 2.825
X7 54.426 33.470 0.220
YE13 83.217 66.470 -
LT3 62.507 28.110 -
Z4 139.032 31.280 -
2-1 141.557 - -
X5 61.118 55.560 -
L1 95.340 50.600 -
GAN1 106.578 104.890 -

表4

菌株基因序列比对结果"

菌株编号 细菌种属 GenBank登录号 相似性/%
2-1 芽孢杆菌属
(Bacillus subtilis subsp.)
NR 112686.1 100.00
X7 克雷伯菌属
(Klebsiella sp.)
MK 780166.1 100.00
YE13 芽孢杆菌属
(Bacillus subtilis subsp.)
MK 875169.1 100.00
L1 大肠杆菌属
(Enterobacter sp.)
MK 318778.1 99.36
GAN1 泛菌属
(Pantoea sp.)
FJ 357809.7 98.73
Y8 芽孢杆菌属
(Bacillus subtilis subsp.)
MN 744459.1 100.00
Z4 环状芽孢杆菌属
(Bacillus circulans strain)
CP 026033.1 99.86

表5

微生物脱胶正交试验优化结果"

试验
A B C 空列D 残胶
率/%
断裂强度/
(cN·dtex-1)
1 1 1 1 1 47.76 6.33
2 1 2 2 2 44.69 1.82
3 1 3 3 3 42.90 3.13
4 2 1 2 3 36.86 8.19
5 2 2 3 1 42.52 4.28
6 2 3 1 2 41.28 3.08
7 3 1 3 2 40.22 2.22
8 3 2 1 3 46.64 2.56
9 3 3 2 1 38.97 1.72
残胶率 K1 45.12 41.61 45.23 43.08
K2 40.22 44.62 40.17 42.06
K3 41.94 41.05 41.88 42.13
R 4.90 3.57 5.05 1.02
断裂强度 K1 3.76 5.58 3.99 4.11
K2 5.18 2.89 3.91 2.37
K3 2.17 2.64 3.21 4.63
R' 3.01 2.94 0.78 2.25

表6

方差分析表"

指标 方差来源 平方和 自由度 均方和 F 显著性
残胶率 A 37.08 2 18.54 19.04 **
B 22.12 2 11.06 11.36 *
C 39.75 2 19.88 20.41 **
D 1.95 2 0.97
断裂
强度
A 13.60 2 6.80 12.31 *
B 15.94 2 7.97 14.43 *
C 1.10 2 0.55
D 8.41 2 4.20 7.61

表7

脱胶效果验证表"

菌株 残胶
率/%
菌株 残胶
率/%
Z4 57.70 C6/1(Z4,Y8,GAN1,2-1,L1,X7) 50.74
YE13 57.00 C6/2(Z4,YE13,Y8,2-1,L1,X7) 44.06
Y8 55.50 C6/3(YE13,Y8,GAN1,2-1,L1,X7) 42.86
GAN1 50.90 C6/4(Z4,YE13,GAN1,2-1,L1,X7) 38.60
2-1 48.40 C6/5(Z4,YE13,Y8,GAN1,2-1,X7) 34.70
L1 47.70 C6/6(Z4,YE13,Y8,GAN1,2-1,L1) 32.19
X7 46.64 C6/7(Z4,YE13,Y8,GAN1,L1,X7) 31.04
C7(Z4,YE13,Y8,GAN1,2-1,L1,X7) 30.45
[1] BI X, ZHANG W, YU C, et al. UV resistance of bast fibers[J]. Cellulose, 2019, 26(10): 6061-6071.
doi: 10.1007/s10570-019-02467-0
[2] YUAN Y, ZHOU J H, ZHENG Y F, et al. Beneficial effects of polysaccharide-rich extracts from apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice[J]. Biomedicine & Pharmacotherapy, 2020.https://doi.org/10.1016/j.biopha.2020.110182.
[3] LI C, TAN F, YANG J J, et al. Antioxidant effects of Apocynum venetum tea extracts on d-galactose-induced aging model in mice[J]. Antioxidants, 2019.DOI:10.3390/antiox8090381.
doi: 10.3390/antiox8090381
[4] KASIMU R, FAN Z Z, WANG X L, et al. Anti-platelet aggregation activities of different fractions in leaves of Apocynum venetum L[J]. Journal of Ethnopharmacology, 2015, 168: 116-121.
doi: 10.1016/j.jep.2015.03.013 pmid: 25835371
[5] LI M H, HAN G T, CHEN H, et al. Chemical compounds and antimicrobial activity of volatile oils from bast and fibers of Apocynum venetum[J]. Fibers and Polymers, 2012, 13(3): 322-328.
doi: 10.1007/s12221-012-0322-6
[6] XIE W, ZHANG X, WANG T, et al. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L(Luobuma): a review[J]. Journal of Ethnopharmacology, 2012, 141(1): 1-8.
doi: 10.1016/j.jep.2012.02.003
[7] 屈永帅, 施朝禾, 张瑞云, 等. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11):81-88.
QU Yongshuai, SHI Chaohe, ZHANG Ruiyun, et al. Effect of anthraquinone additive on properties of glycol solvent degummed ramie fibers[J]. Journal of Textile Research, 2020, 41(11): 81-88.
[8] 王军, 夏东升, 陈悟, 等. 苎麻生物脱胶研究进展[J]. 安徽农业科学, 2008, 36(15): 6517-6518.
WANG Jun, XIA Dongsheng, CHEN Wu, et al. Progress in degization of ramie biology[J]. Anhui Agricultural Science, 2008, 36(15): 6517-6518.
[9] 彭源德, 杨喜爱, 严理, 等. 亚麻脱胶过程中常用酶类的动态变化[J]. 纺织学报, 2006, 27(4): 11-14.
PENG Yuande, YANG Xiai, YAN Li, et al. Dynamic changes of enzymes in the process of flax degum-ming[J]. Journal of Textile Research, 2006, 27(4): 11-14.
[10] 储长流, 郑皆德. 苎麻酶脱胶用菌株的筛选及性能[J]. 纺织学报, 2006, 27(3): 27-29.
CHU Changliu, ZHENG Jiede. Selection and characterization of bacillus for enzymatic degumming of ramie fiber[J]. Journal of Textile Research, 2006, 27(3): 27-29.
[11] 郑科, 段盛文, 成莉凤, 等. 苎麻脱胶细菌菌株的筛选、分类鉴定与多样性分析[J]. 中国麻业科学, 2018, 40(5): 201-207.
ZHENG Ke, DUAN Shengwen, CHENG Lifeng, et al. Screening and preliminary analysis of bacteria strains for ramie bio-degumming[J]. Plant Fiber Sciences in China, 2018, 40(5): 201-207.
[12] HANDELSMAN J. Metagenomics: application of genomics to uncultured micro-organisms[J]. Microbiol Mol Biol Rev, 2004, 68(4): 669-685.
doi: 10.1128/MMBR.68.4.669-685.2004
[13] 董鹤娟, 丁轲, 恒子钤, 等. 一株土壤源高产纤维素酶芽孢杆菌的分离与鉴定[J]. 家畜生态学报, 2013, 34(6): 48-52.
DONG Hejuan, DING Ke, HENG Ziqian, et al. Isolation and identifitication of a high yield cellulase bacillus strain from soil[J]. Acta Ecologiae Animalis Domastici, 2013, 34(6): 48-52.
[14] 吴丽艳, 段继强, 范志祥, 等. 亚麻脱胶菌的分离、筛选和鉴定[J]. 云南大学学报(自然科学版), 2007, 29(4): 419-423.
WU Liyan, DUAN Jiqiang, FAN Zhixiang, et al. Isolation, screening and identification of bacterium strains for accelerating flax: degumming[J]. Journal of Yunnan University(Natural Sciences Edition), 2007, 29(4): 419-423.
[15] 王玮红. 罗布麻好氧微生物脱胶初探[D]. 青岛: 青岛大学, 2004:5-14.
WANG Weihong. Preliminary study on degumming of apocynum venetum by aerobic microorganisms[D]. Qingdao: Qingdao University, 2004:5-14.
[16] 尹亮. 混合菌群共培养对偶氮染料的协同脱色及降解的研究[D]. 广州: 华南理工大学, 2009:10-24.
YIN Liang. Study on synergistic decolorization and degradation of azo dyes by co-culture of mixed bacteria[D]. Guangzhou: South China University of Technology, 2009:10-24.
[17] 张忠义, 陈辉, 刘振林. 蜂蜜中蔗糖转化酶测定方法探讨[J]. 食品科学, 2002, 23(11): 116-118.
ZHANG Zhongyi, CHEN Hui, LIU Zhenlin. Study on the determination of invertase in honey[J]. Food Science, 2002, 23(11): 116-118.
[18] 李朝英, 郑路. 基于DNS比色法的土壤蔗糖酶检测条件选择[J]. 中国农学通报, 2016, 32(27): 171-176.
LI Chaoying, ZHENG Lu. Selection of soil sucrase detection conditions based on DNS colorimetry[J]. Chinese Agricultural Science Bulletin, 2016, 32(27): 171-176.
[19] LUGTENBERG B, KAMILOVA F. Plant-growth-promoting rhizobacteria[J]. Annu Rev Microbiol, 2009, 63:541-56.
doi: 10.1146/annurev.micro.62.081307.162918 pmid: 19575558
[20] 王茜, 陈洪高, 刘露, 等. 苎麻脱胶菌群RAMCD407中优势菌的分离、鉴定及脱胶能力分析[J]. 微生物学通报, 2016, 43(12): 2561-2567.
WANG Qian, CHEN Honggao, LIU Lu, et al. Isolation, identification and degumming ability analysis of dominant ramie degumming bacteria RAMCD407[J]. Journal of Microbiology, 2016, 43(12): 2561-2567.
[1] 徐绚绚, 巩继贤, 张健飞, 王莉, 黄景凤. 罗布麻抑菌物质及其作用机制的研究进展[J]. 纺织学报, 2020, 41(09): 149-154.
[2] 郑振荣, 智伟, 邢江元, 杜换福, 徐子健. 大麻纤维草酸铵-酶联合脱胶工艺[J]. 纺织学报, 2019, 40(11): 88-93.
[3] 张淑梅 姬春林 殷秀梅 潘峰 毛鑫磊. 羊毛生物酶联合防毡缩整理[J]. 纺织学报, 2018, 39(11): 85-90.
[4] 高世会 郁崇文. 罗布麻中黄酮的超临界CO2萃取及其抗菌性[J]. 纺织学报, 2018, 39(08): 71-76.
[5] 王宗乾 杨海伟 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39(04): 69-76.
[6] 巩继贤 张秋亚 张涛 李政 张健飞. 韧皮结构对罗布麻生物脱胶的影响[J]. 纺织学报, 2017, 38(12): 83-87.
[7] 吴惠英. 脱胶工艺对蚕丝溶解及再生丝素蛋白纤维性能的影响[J]. 纺织学报, 2017, 38(08): 75-80.
[8] 王莉 杨增光 张健飞 巩继贤 孟繁杰. 罗布麻秆粘胶纤维生产工艺技术[J]. 纺织学报, 2013, 34(6): 26-29.
[9] 杜兆芳, 黄芙蓉. 苎麻复合微生物脱胶工艺优化[J]. 纺织学报, 2012, 33(5): 56-61.
[10] 刘红玉;胡婷莉;李戎;阎克路. 聚乙烯醇降解酶在纯PVA上浆棉织物退浆中的应用[J]. 纺织学报, 2010, 31(4): 69-73.
[11] 毛炜坤;张振中;王向东;华坚. 野生苎麻微生物脱胶优势菌的选育及其应用[J]. 纺织学报, 2010, 31(11): 62-66.
[12] 薛卫巍;翟秋梅;薛永常;郑来久. 罗布麻微生物脱胶工艺优化[J]. 纺织学报, 2009, 30(04): 80-84.
[13] 曾莹;向新柱. 苎麻微生物脱胶菌株的筛选[J]. 纺织学报, 2007, 28(11): 73-75.
[14] 韩光亭.;张元明;冯勋伟;孙永军;刘彩明. 罗布麻生物脱胶工艺模型探讨[J]. 纺织学报, 2007, 28(11): 81-84.
[15] 钱微君;冯新星;陈建勇. 水质对大麻纤维浸泡脱胶效果的影响[J]. 纺织学报, 2006, 27(6): 19-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!