纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 1-10.doi: 10.13475/j.fzxb.20220706210

• 特约专栏:纺织科技前沿 •    下一篇

纺织品前瞻性制备技术及应用研究现状与发展趋势

乌婧1,2,3, 江振林4, 吉鹏1,2, 谢锐敏3,5, 陈烨3,5, 陈向玲6, 王华平3,5()   

  1. 1.东华大学 纺织产业关键技术协同创新中心, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
    3.东华大学 纤维材料改性国家重点实验室, 上海 201620
    4.上海工程技术大学 化学化工学院, 上海 201620
    5.东华大学 材料科学与工程学院, 上海 201620
    6.东华大学 环境科学与工程学院, 上海 201620
  • 收稿日期:2022-07-18 修回日期:2022-09-29 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 王华平(1965—),男,研究员,博士。主要研究方向为化纤及纺织品绿色制造。E-mail:wanghp@dhu.edu.cn
  • 作者简介:乌婧(1984—),女,副教授,博士。主要研究方向为生物基、生物可降解纤维及材料。
  • 基金资助:
    中国工程院咨询项目(2021-XBZD-13-33);国家重点研发计划项目(2021YFB3700300)

Research status and development trend of perspective preparation technologies and applications for textiles

WU Jing1,2,3, JIANG Zhenlin4, JI Peng1,2, XIE Ruimin3,5, CHEN Ye3,5, CHEN Xiangling6, WANG Huaping3,5()   

  1. 1. Co-Innovation Center for Textile Industry, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    4. School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    5. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    6. College of Environmental Science and Engineering, Donghua University, Shanghai 201620,China
  • Received:2022-07-18 Revised:2022-09-29 Published:2023-01-15 Online:2023-02-16

摘要:

随着纺织行业各领域的高速发展,纺织产业不断迭代升级,通过革新逐步实现从量变到质变的转化,实现高质量发展。通过介绍由1,3-丙二醇、乳酸等生物基材料为代表的纤维素原料在合成生物学等领域进行的革新,使纤维基体在分子结构、维度、性能、智能化以及应用等方面突破极限;结合目前纺织行业发展趋势,从未来纺织品的成形与制造技术、应用领域及新型产品等方面进行了分析和展望,以期在未来会有更为成熟的一体化制备方法和成形技术,使纺织产品不仅能应用于日常生活领域也能应用于极限领域,为开拓更广阔的市场提供新思路。

关键词: 纺织品, 成形技术, 智能制造, 绿色低碳, 再生循环

Abstract:

Significance Chemical fiber is a necessary component of human productivity and daily living. Since the 1970s, China's chemical fiber industry has developed quickly, and China has led the world in production of chemical fiber for almost 20 years. In 2021, China's chemical fiber output has reached 60.25 million tons, or more than 70% of the total amount produced worldwide. Currently, the development of high performance, functional, and intelligent textile products has drawn considerable attention as consumer demand has increased significantly. The production of raw resources, technological advancement, and the application fields of functional products are all significant variables. The future development of the textile industry is undoubtedly very important, and in order to be clear about the future development direction, it is thus crucial to summarize the possible and potential development trend of novel technologies and improved products with higher performance and wider application fields in future textile industry on the basis of the existing technologies and problems.
Progress Currently, significant obstacles still exist to the growth of the textile sector, which are mostly seen in the following four aspects: 1) shortage of resources for fiber raw materials; 2) increase of processing costs; 3) products elevation. Middle and low-grade products no longer have any advantages, the production and processing capability is forced to migrate out of China, and new and high-grade products are being developed and produced; 4) absence of innovative technology. The developed synthetic biological method and genetic engineering technology can successfully prepare bio-based raw materials like 1, 3-propanediol and lactic acid in order to avoid the significant consumption of petroleum-based raw materials and the competition between bio-based raw materials and grain. Fiber material forming technology is moving progressively in the direction of an effective multi-flow, sustainable, green, and intelligent technology introduction. Furthermore, the fiber forming technology is more advanced to achieve the accurate building of multiple fiber structures. A greater range of applications can be met by the expansion and performance improvement of fiber structures. Application of clothing in the direction of development for high performance, minimal loss, light weight, and multifunctional clothing. Additionally, textiles have new uses in the development of biomedical materials, environmental protection filtration materials, and agricultural production materials. The innovation products are multi-functional and more intelligent, and can realize the active adaptation of structure and performance in varied application conditions.
Conclusion and Prospect The development of textile industry and textile technology has played a crucial role in the evolution of human civilization. Today in the 21st century, the textile industry is no longer just a conventional industry to meet the needs of human clothing. Its technological development is more advanced and cutting-edge: 1) the innovation of raw materials. Innovations in feedstock technology such as the development of bio-based feedstocks have made fiber products more environmentally friendly. Pure organic polymers are no longer the only type of fibrous matrix materials; in addition, inorganic, metal, and organic-inorganic hybrid fiber materials are now covered. 2) forming technology. Fiber material forming technology is gradually moving toward an effective multi-flow, environmentally friendly, and sustainable processing process. Infinite creative potential exists for final applications thanks to the advancement of fiber forming technology and the evolution of fiber on a multidimensional scale. 3) intelligent manufacturing. The adoption of intelligent manufacturing, complete process automation, information technology, and digitalization can significantly increase the productivity of the textile sector. 4) more diverse applications. In the future, textiles could be used in apparel, wearable textiles, household textile items, and extremely innovative fields including biomedicine, the environment, energy, agricultural production, building, and transportation, among others, with the focus on intelligence and function. The textile sector has demonstrated multifaceted inventive growth that will open up more room for human civilization and technology advancement.

Key words: textiles, forming technology, intelligent manufacturing, green and low carbon, recycling

中图分类号: 

  • TS102.5

图1

纤维加工工艺与极限直径间的演变历程"

[1] 沈秋华. 浅析我国纺织行业发展现状[J]. 山东工业技术, 2019 (10): 57.
SHEN Qiuhua. Development status of textile industry in China[J]. Journal of Shandong Industrial Technology, 2019(10): 57.
[2] 孟可俊. 纺织行业现状与发展分析[J]. 东方企业文化, 2018(S2): 2.
MENG Kejun. Analysis on present situation and development of textile industry[J]. Oriental Enterprise Culture, 2018(S2): 2.
[3] 于娟. 科技创新、数字经济与绿色低碳共助我国纺织工业高质量发展[J]. 中国国情国力, 2022(8): 30-32.
YU Juan. Scientific and technological innovation, digital economy and green low carbon help china's textile industry develop with high quality[J]. China National Conditions and Strength, 2022(8): 30-32.
[4] 杨云, 殷冉, 裴建军. 微生物发酵法制备1,3-丙二醇的研究进展[J]. 化工时刊, 2017, 31(12): 24-28.
YANG Yun, YIN Ran, PEI Jianjun. Progress in microbial fermentation of 1,3-propanediol[J]. Chemical Industry Times, 2017, 31(12): 24-28.
[5] 陈晓波, 苏栋根. 1,3-丙二醇产业现状与发展建议[J]. 石油化工技术与经济, 2017, 33(6): 1-4.
CHEN Xiaobo, SU Donggen. PDO industry status and development suggestions[J]. Technology & Economics in Petrochemicals, 2017, 33(6): 1-4.
[6] 乔凯. 生物基合成纤维单体发展现状及展望[J]. 纺织导报, 2017(2): 32-38.
QIAO Kai. Development and outlook of bio-based synthetic fiber monomers[J]. China Textile Leader, 2017(2): 32-38.
[7] 王少博, 肖阳, 黄鑫, 等. 生物基聚对苯二甲酸丙二醇酯纤维制备技术的研究进展[J]. 纺织学报, 2021, 42(4): 16-25.
WANG Shaobo, XIAO Yang, HUANG Xin, et al. Research progress on manufacturing technique of bio-based polytrimethylene terephthalate fibers[J]. Journal of Textile Research, 2021, 42(4): 16-25.
[8] 林伟坚, 张博文, 汪卫华. 从全球气候变化、制造业产业升级、国家安全及材料基因工程维度探讨材料科学发展趋势[J]. 中国科学院院刊, 2022, 37(3): 336-342.
LIN Weijian, ZHANG Bowen, WANG Weihua. Discussion of materials science development trend through climate change, manufacturing update, national security and materials genome initiative[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(3): 336-342.
[9] LI H, TANG R, DAI J, et al. Recent progress in flax fiber-based functional composites[J]. Advanced Fiber Materials, 2022, 4(2): 171-184.
doi: 10.1007/s42765-021-00115-6
[10] 王继乾, 闫宏宇, 李洁, 等. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
doi: 10.7536/PC180112
WANG Jiqian, YAN Hongyu, LI Jie, et al. Artificial metalloenzymes based on peptide self-assembly[J]. Progress in Chemisty, 2018, 30(8): 1121-1132.
[11] 吕昱琦, 王梦凡, 齐崴, 等. 基于短肽自组装与共组装的纳米纤维人工水解酶[J]. 高等学校化学学报, 2015, 36(7): 1304-1309.
LÜ Yuqi, WANG Mengfan, QI Wei, et al. Artificial hydrolase based on short peptides self-and co-assembly nanofiber[J]. Chemical Jouranl of Chinese Universities, 2015, 36(7): 1304-1309.
[12] CHAND S. Review carbon fibers for composites[J]. 2000, 35(6): 1303-1307.
[13] KADLA J F, KUBO S, VENDITTI R A, et al. Lignin-based carbon fibers for composite fiber applications[J]. Carbon, 2002, 40(15): 2913-2920.
doi: 10.1016/S0008-6223(02)00248-8
[14] KARAHAN M, LOMOV S V, BOGDANOVICH A E, et al. Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric composite[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1301-1311.
doi: 10.1016/j.compositesa.2010.05.014
[15] POURMOHAMMADI A. Nonwoven materials and joining techniques[M]//Joining textiles.[S.l.]: Elsevier, 2013: 565-581.
[16] CAO X, DENG J, PAN K. Electrospinning janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction[J]. Advanced Fiber Materials, 2020, 2(2): 85-92.
doi: 10.1007/s42765-020-00033-z
[17] TAO H, KAPLAN D L, OMENETTO F G. Silk materials: a road to sustainable high technology[J]. Advanced Materials, 2012, 24(21): 2824-2837.
doi: 10.1002/adma.201104477
[18] LIN S, RYU S, TOKAREVA O, et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres[J]. Nature Communications, 2015, 6(1): 1-12.
[19] ZHANG F, LU Q, YUE X, et al. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent[J]. Acta Biomaterialia, 2015, 12: 139-145.
doi: S1742-7061(14)00437-1 pmid: 25281787
[20] XUE J, XIE J, LIU W, et al. Electrospun nanofibers: new concepts, materials, and applications[J]. Accounts of Chemical Research, 2017, 50(8): 1976-1987.
doi: 10.1021/acs.accounts.7b00218 pmid: 28777535
[21] TRUBY R L, LEWIS J A. Printing soft matter in three dimensions[J]. Nature, 2016, 540(7633): 371-378.
doi: 10.1038/nature21003
[22] BAI Y, ZHANG R, YE X, et al. Carbon nanotube bundles with tensile strength over 80 GPa[J]. Nature Nanotechnology, 2018, 13(7): 589-595.
doi: 10.1038/s41565-018-0141-z pmid: 29760522
[23] YANG B, WANG L, ZHANG M, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020.DOI:10.1002/adfm.202000186.
doi: 10.1002/adfm.202000186
[24] ZHAI G, ZHOU J, XIANG H, et al. Combustion forming hollow nanospheres as a ceramic fortress for flame-retardant fiber[J]. Progress in Natural Science: Materials International, 2021, 31(2): 239-247.
doi: 10.1016/j.pnsc.2021.01.004
[25] WANG H, WANG H, WANG Y, et al. Laser writing of janus graphene/Kevlar textile for intelligent protective clothing[J]. ACS Nano, 2020, 14(3): 3219-3226.
doi: 10.1021/acsnano.9b08638 pmid: 32083839
[26] HA T, TRAN J, LIU S, et al. A chest-laminated ultrathin and stretchable E-Tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals[J]. Advanced Science, 2019.DOI: 10.1002/advs.201900290.
doi: 10.1002/advs.201900290
[27] BARR A. Google's new moonshot project: the human body[J]. The Wall Street Journal, 2014, 27:18.
[28] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
doi: 10.1038/nature16521
[29] KHAN M B, KIM D H, HAN J H, et al. Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit[J]. Nano Energy, 2019, 58: 211-219.
doi: 10.1016/j.nanoen.2019.01.049
[30] MINEV I R, MUSIENKO P, HIRSCH A, et al. Electronic dura mater for long-term multimodal neural interfaces[J]. Science, 2015, 347(6218): 159-163.
doi: 10.1126/science.1260318
[31] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.
pmid: 16614215
[32] 王康. 基于3D打印技术在纺织复合材料领域中的创新应用[J]. 染整技术, 2018, 40(6): 56-57,60.
WANG Kang. Innovative application of 3D printing technology in the field of textile composites[J]. Textile Dyeing and Finishing Journal, 2018, 40(6): 56-57,60.
[33] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14.
WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021, 42(12): 1-14.
doi: 10.1177/004051757204200101
[34] 万雷. 我国化纤行业智能制造发展现状及展望[J]. 合成纤维工业, 2018, 41(6): 36-41.
WAN Lei. Intelligent manufacturing development status and trend of China chemical fiber industry[J]. China Synthetic Fiber Industry, 2018, 41(6): 36-41.
[35] 陈向玲, 王华平, 吉鹏. 我国化纤智能制造的柔性与多目标生产[J]. 纺织导报, 2020(3): 14-25.
CHEN Xiangling, WANG Huaping, JI Peng. Flexibility and multi-objective production of intelligent manufacturing of China's chemical fiber industry[J]. China Textile Leader, 2020(3): 14-25.
[36] 德勤. 制造业如虎添翼:工业4.0与数字孪生[J]. 软件和集成电路, 2018(9): 42-49.
DE Qin. Manufacturing grows: industry 4.0 and the digital twin[J]. Software and Integrated Circuit, 2018(9): 42-49.
[37] XIE R, HAO K, HUANG B, et al. Data-driven modeling based on two-stream lambda gated recurrent unit network with soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 7034-7043.
doi: 10.1109/TIE.2019.2927197
[38] 程平, 彭勇, 汪馗, 等. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2022(1): 1-15.
CHENG Ping, PENG Yong, WANG Kui, et al. Quasi static penetration property of 3D printed continuous ramie-fiber reinforced polylactic acid composites[J]. Materials Reports, 2022(1): 1-15.
[39] BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45: 9175-9179.
doi: 10.1021/es201811s
[40] 黎淑婷, 张海煊, 滕万红. 智能服装的应用现状及发展前景[J]. 纺织科技进展, 2019(4): 4-7.
LI Shuting, ZHANG Haixuan, TENG Wanhong. Application status and development trend of smart garment[J]. Progress in Textile Science & Technology, 2019(4):4-7.
[41] HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017, 3(11): 1-8.
[42] 张佳欣. 马斯克:Neuralink脑机接口有望明年用于人类[N]. 科技时报, 2021-12-09(3).
ZHANG Jiaxin. Musk: The Neuralink brain-computer interface is expected to be available for humans next year[N]. Science and Technology Daily, 2021-12-09(3).
[43] 刘春浩, 高逸桉, 王超凡, 等. 溶剂蒸汽后处理电纺纳米纤维用于高效过滤PM2.5[J]. 山东化工, 2018, 47(8): 194-197.
LIU Chunhao, GAO Yian, WANG Chaofan, et al. Electrospinning nanofibers with solvent vapor treatment to form layered structures for efficient PM2.5 filtration[J]. Shandong Chemical Industry, 2018, 47(8): 194-197.
[44] 李家丽. 碳纤维复合材料在新能源汽车中的运用[J]. 当代化工研究, 2022(13): 49-51.
LI Jiali. Application of carbon fiber composite materials in new energy vehicles[J]. Modern Chemical Research, 2022(13): 49-51.
[1] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[2] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[3] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[4] 尹喆, 赵海浪, 徐红, 毛志平, 谭玉静. 纺织品中喹啉含量的快速测定[J]. 纺织学报, 2022, 43(12): 125-130.
[5] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[6] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[7] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[8] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[9] 王铭亮, 张慧乐, 岳晓丽, 陈慧敏. 基于数字图像相关法的纱线和织物微观变形测量[J]. 纺织学报, 2022, 43(11): 52-58.
[10] 程宁波, 缪东洋, 王先锋, 王朝晖, 丁彬, 俞建勇. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022, 43(10): 200-208.
[11] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[12] 张洁, 徐楚桥, 汪俊亮, 郑小虎. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(09): 1-10.
[13] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[14] 杜欢政, 刘建成, 陆莎. 双碳目标下纺织产业的绿色创新与发展[J]. 纺织学报, 2022, 43(09): 120-128.
[15] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!