纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 100-105.doi: 10.13475/j.fzxb.20211100606

• 纺织工程 • 上一篇    下一篇

捻度对棉/氨纶/银丝包芯纱性能的影响

李龙(), 吴磊, 林思伶   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2021-11-01 修回日期:2022-09-29 出版日期:2023-01-15 发布日期:2023-02-16
  • 作者简介:李龙(1964―),男,教授,博士。主要研究方向为天然纤维材料资源及其纺织技术。E-mail:lilong2188@126.com
  • 基金资助:
    陕西省教育厅科研计划项目(18JK0337)

Influence of yarn twist on properties of cotton/spandex/silver wire core spun yarns

LI Long(), WU Lei, LIN Siling   

  1. School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-11-01 Revised:2022-09-29 Published:2023-01-15 Online:2023-02-16

摘要:

为了制备具有良好纺织特性的弹性导电纱线材料,以棉粗纱、氨纶、银丝为原料,通过设计原料的喂入方式及在环锭纺纱机的前罗拉与导纱钩之间附加定位装置,纺制以氨纶为纱芯、银丝与棉纤维螺旋包缠氨纶且棉纤维位于纱线表面的弹性导电包芯纱,探究捻度对纱线弹性、导电性、耐磨性和断裂强力的影响。以银丝紧贴氨纶表面包缠为模型,计算得到不同捻度下包芯纱中紧贴氨纶表面包缠的银丝长度的理论值。实验结果表明:包芯纱的弹性随捻度变化,在70捻/(10 cm)时包芯纱定伸长伸长弹性率、定负荷伸长弹性率较大;在包芯纱伸直(不伸长)状态下,纱线实测电阻值随捻度的增大而增大;在包芯纱伸长10%的状态下其实测电阻值小于伸直状态下等长度包芯纱实测电阻值,且在75 捻/(10 cm)时伸长状态与伸直状态下的相同长度包芯纱的实测电阻值之差较小。

关键词: 包芯纱, 导电纱线, 银丝, 氨纶, 捻度, 导电性

Abstract:

Objective The application of conductive yarns in flexible and wearable smart devices has attracted extensive attention from many researchers. The key objectives of this research included preparing elastic and conductive yarns with excellent textile properties such as color attributes, wearing comfort, and environmental friendliness.
Method In order to prepare a conductive yarn with favorable textile properties, cotton roving, silver wire and spandex were selected as the raw materials. By designing the feeding of raw materials and attaching a positioning device between the front roller and the yarn guide in the ring spinning machine, an elastic conductive core yarn with spandex as the core, silver yarn and cotton fibers as the sheath with cotton fibers on the surface of the yarn was produced to investigate the influence of yarn twist on the elasticity, conductivity, abrasion resistance and breaking strength of the core spun yarn. Using the model of silver wire tightly wrapped around the spandex surface (Fig.2), the theoretical value of the length of silver wire wrapped around the spandex surface in the core spun yarn with different yarn twist was calculated.
Results The experimental results showed that the elasticity of core spun yarn varied with yarn twist, and the elasticity of core spun yarn at constant elongation and at constant load was larger at a yarn twist of 70 twist/(10 cm) than yarns with other yarn twists (Fig.4). In the unstretched straight state of the core spun yarn, the measured resistance of the yarn increased with the increase of yarn twist (Tab. 2), because increasing the yarn twist causes the pitch of the wrapping silver wire to decrease and the length of the silver wire in the unit length of core spun yarn to increase. At 10% elongation of the core spun yarn, the measured resistance of the yarn was smaller than that of the same length of core spun yarn in the unstretched state, and the difference between the measured resistance of the same length of core yarn in the elongated state and in the unstretched state was smaller at a twist of 75 twist/(10 cm) (Tab. 3). At 10% elongation of the core spun yarn, the measured resistance of the core yarn per unit length was greater than the theoretical resistance of the straight silver wire, indicating that when the core spun yarn elongation is at 10%, the silver wire in the yarn was not at the completely straightened state, and the yarn elongation caused the pitch of the silver wire over the spandex became larger and the actual length of the silver wire in the core spun yarn per unit length became smaller. At 75 twist/(10 cm), the core spun yarn showed higher wear resistance. Because when the twist is too high, the torque of cotton fibers in the yarn is high, the fiber stress increases, causing the cotton fibers to be easily worn off and the wear resistance of the core spun yarn is reduced.
Conclusion The elasticity and conductivity of core spun yarn are closely related to the yarn twist level. For the actual core spun yarns, the silver wire is not tightly wrapped around the surface of the spandex core, and there are cotton fibers between the spandex and the silver wire, causing the theoretical resistance value per unit length to be smaller than the measured resistance value. Since cotton fibers can be dyed in different colors and the cotton fibers are distributed on the surface of the core spun yarn, this work can be used to further develop elastic and conductive yarns in different colors and comfortable to wear for the transmission of electrical signals in smart wearable textiles, powering electronic textiles, and electrical heating devices. The preparation process of this core spun yarn is environmental friendly. In the application of flexible and wearable smart devices, such elastic and conductive core spun yarsn have a good development prospect.

Key words: core spun yarn, conductive yarn, silver wire, spandex, yarn twist, electrical conductivity

中图分类号: 

  • TS114.7

图1

包芯纱纺纱示意图"

图2

银丝紧贴氨纶表面包缠示意图"

表1

不同捻度下的β, L与Lt值"

捻度/(捻·(10 cm)-1) β/(°) L/(10-1cm) Lt/cm
65 86.46 2.488 2 1.617
70 86.71 2.487 5 1.741
75 86.93 2.487 0 1.865
80 87.12 2.486 6 1.989
85 87.29 2.486 2 2.113
90 87.44 2.485 9 2.237

图3

不同捻度包芯纱的耐磨次数"

图4

不同捻度包芯纱的弹性率"

图5

不同捻度纱线的断裂强力"

表2

实测电阻与理论电阻的计算结果"

捻度/(捻·(10 cm)-1) Ry Ry标准差/Ω Rt
65 1.055 2 0.028 3 1.017 3
70 1.229 8 0.082 4 1.095 3
75 1.340 3 0.061 6 1.173 3
80 1.735 1 0.079 4 1.251 3
85 1.762 7 0.067 1 1.329 3
90 1.816 1 0.043 6 1.407 3

图6

包芯纱的外观形貌"

表3

伸长10%后包芯纱的实测电阻值"

捻度/(捻·(10 cm)-1) Rs Rs标准差 /Ω Ry-Rs
65 0.877 2 0.023 1 0.178 0
70 0.997 1 0.063 2 0.232 7
75 1.226 7 0.052 3 0.113 6
80 1.576 0 0.061 4 0.159 1
85 1.591 2 0.058 7 0.171 5
90 1.662 2 0.040 3 0.153 9
[1] 马珮珮, 李龙, 吴磊. 导电纱线的制备及其在智能可穿戴装置中的应用研究进展[J]. 材料工程, 2021, 49(10):31-42.
MA Peipei, LI Long, WU Lei. Research progress in preparation of conductive yarn and its application in smart wearable devices[J]. Journal of Materials Engineering, 2021, 49(10):31-42.
[2] 张岩, 裴泽光, 陈革. 喷气涡流纺金属丝包芯纱的制备及其结构与性能[J]. 纺织学报, 2018, 39(5):25-31.
ZHANG Yan, PEI Zeguang, CHEN Ge. Fabrication, structure and properties of vortex core-spun yarn containing metal wire[J]. Journal of Textile Research, 2018, 39(5):25-31.
[3] AMIR S, ABHER R, ZUBAIR K, et al. Processing of metallic fiber hybrid spun yarns for better electrical conductivity[J]. Materials and Manufacturing processes, 2019, 34(9):1008-1015.
doi: 10.1080/10426914.2019.1594270
[4] 魏赛男, 李瑞洲, 姚继明, 等. 竹浆、不锈钢长丝包芯纱的纺制及性能研究[J]. 上海纺织科技, 2013, 41(9):31-33.
WEI Sainan, LI Ruizhou, YAO Jiming, et al. Spinning and performance of bamboo/stainless steel filament core yarn[J]. Shanghai Textile Science & Technology, 2013, 41(9):31-33.
[5] 杜玲玲, 李婷婷, 潘婧, 等. 芳纶/不锈钢长丝包芯纱织物的制备及其防刺性能[J]. 纺织学报, 2017, 38(6):33-38.
DU Lingling, LI Tingting, PAN Jing, et al. Preparation and stab-resistance performance of aramid/ stainless-steel fiber core-spun fabrics[J]. Journal of Textile Research, 2017, 38(6):33-38.
[6] PEI Z, ZHANG Y, CHEN G. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system[J]. Textile Research Journal, 2019, 89(1):113-118.
doi: 10.1177/0040517517736477
[7] GUO L, BERGLIN L, MATTILA H. Improvement of electro-mechanical properties of strain sensors made of elastic-conductive hybrid yarns[J]. Textile Research Journal, 2012, 82(19):1937-1947.
doi: 10.1177/0040517512452931
[8] WANG Y, YU W, WANG F. Structural design and physical characteristics of modified ring-spun yarns intended for e-textiles: a comparative study[J]. Textile Research Journal, 2019, 89(2): 121-132.
doi: 10.1177/0040517517741154
[9] WANG Y, GORDON S, YU W, et al. Structural architecture of wearable materials based on tri-component elastic-conductive composite yarn: toward a joule heating application[J]. Textile Research Journal, 2019, 89(16): 3303-3311.
doi: 10.1177/0040517518811937
[10] MA L, WU R, LIU S, et al. A machine fabricated 3D honeycomb structured flame-retardant triboelectric fabric for fire escape and rescue[J]. Advanced Materials, 2020. DOI: 10.1002/adma.202003897.
doi: 10.1002/adma.202003897
[11] 赵亚茹, 肖红, 陈剑英. 不锈钢短纤维/棉包缠氨纶纱的弹性与电学性能[J]. 纺织学报, 2020, 41(3):45-50.
ZHAO Yaru, XIAO Hong, CHEN Jianying. Elastic and electrical properties of stainless steel fiber/cotton blended spandex wrap yarn[J]. Journal of Textile Research, 2020, 41(3):45-50.
[12] 袁艺航, 艾志伟, 李龙. 粗纺羊绒衫的耐磨性研究[J]. 毛纺科技, 2011, 39(3):48-50.
YUAN Yihang, AI Zhiwei, LI Long. Study on wear-resistant property of woolen cashmere yarn[J]. Wool Textile Journal, 2011, 39(3):48-50.
[13] 段海霞, 单小红. 氨纶弹性疲劳性能的研究[J]. 新疆大学学报(自然科学版), 2007, 24(1):121-126.
DUAN Haixia, SHAN Xiaohong. The study of the tired performance in flexibility polyurethane fiber[J]. Journal of Xinjiang University(Natural Science Edition), 2007, 24(1):121-126.
[14] 陈闪闪, 王建坤, 王妹娣. 纺纱方法对棉海藻纤维氨纶包芯纱性能的影响[J]. 棉纺织技术, 2013, 41(10):11-13.
CHEN Shanshan, WANG Jiankun, WANG Meidi. Effect of spinning method on cotton alginate fiber spandex core-spun yarn property[J]. Cotton Textile Technology, 2013, 41(10):11-13.
[15] 郁崇文. 纺纱学[M]. 2版. 北京: 中国纺织出版社, 2009:166-167.
YU Chongwen. Spinning principle[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2009:166-167.
[1] 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111.
[2] 敖利民, 苏娟, 唐雯. 空心锭包覆纺纱包缠捻度及其分布的影响因素分析[J]. 纺织学报, 2022, 43(12): 54-61.
[3] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[4] 权衡, 任敬之, 陈文龙, 袁辉, 谢南平, 巫若子, 倪丽杰. 有机硅及其共混物在锦纶/氨纶织物上的迁移与分布[J]. 纺织学报, 2022, 43(06): 115-120.
[5] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[6] 吴佳庆, 王迎, 郝新敏, 宫玉梅, 郭亚飞. 长丝喂入位置对赛络纺包芯纱结构与性能影响[J]. 纺织学报, 2021, 42(08): 64-70.
[7] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[8] 赵永芳, 钱建华, 孙丽颖, 彭慧敏, 梅敏. 银纳米线改性棉织物的制备及其性能[J]. 纺织学报, 2021, 42(05): 115-121.
[9] 彭来湖, 罗昌, 牛冲, 吕永法, 胡旭东, 戴宁. 针织纬编氨纶输送控制技术[J]. 纺织学报, 2021, 42(04): 162-169.
[10] 李浩, 邢明杰, 孙志豪, 吴瑶. 基于图像的喷气涡流纺纱线捻度测试方法探讨[J]. 纺织学报, 2021, 42(02): 60-64.
[11] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[12] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[13] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[14] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[15] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[5] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[6] 林红;陈宇岳;任煜;仲志锋;王红卫. 经等离子体处理的蚕丝纤维结构与性能[J]. 纺织学报, 2004, 25(03): 9 -10 .
[7] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[8] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[9] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[10] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .