纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 136-141.doi: 10.13475/j.fzxb.20220100706

• 染整与化学品 • 上一篇    下一篇

活性染料拼色轧染过程中补液模型的研究

代亚敏1(), 刘宏臣1, 毛志平2, 陆辉2, 徐红2, 钟毅2, 周培文1   

  1. 1.中原工学院 纺织学院, 河南 郑州 451100
    2.东华大学 化学与化工学院, 上海 201620
  • 收稿日期:2022-01-05 修回日期:2022-10-27 出版日期:2023-01-15 发布日期:2023-02-16
  • 作者简介:代亚敏(1992—),女,讲师,博士。主要研究方向为纺织印染新技术及纺织品功能性整理。E-mail:yamindai@zut.edu.cn
  • 基金资助:
    河南省高等学校重点科研项目计划(20B150033)

Replenishment modeling in pad dyeing process with mixed dyes

DAI Yamin1(), LIU Hongchen1, MAO Zhiping2, LU Hui2, XU Hong2, ZHONG Yi2, ZHOU Peiwen1   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 451100, China
    2. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
  • Received:2022-01-05 Revised:2022-10-27 Published:2023-01-15 Online:2023-02-16

摘要:

为探究染料拼色轧染体系中补液系统的数字化控制方法,基于拉曼光谱技术对染料拼色染色过程进行实时监测,建立了染料拼色轧染过程中的补液模型。利用拉曼光谱技术与偏最小二乘法(PLS)相结合的方法,建立拼色染料浓度的定量分析模型,实现染料拼色上染过程的实时监测,得到染料拼色上染过程中各染料的初始上染速率值;然后根据补液前后染液质量守恒和各染料质量守恒公式建立染料拼色轧染的补液模型,计算出需要实时补加的各染料质量。实验验证结果表明:通过该补液模型进行补液后,轧染的25块织物色差均保持在0.5左右,且轧染液中各染料的质量浓度基本保持不变;而以原染液质量浓度补液后织物色差达到7左右,染料质量浓度降低了50%以上;该补液模型相比原染液补液体系的准确性较高。

关键词: 拼色染料, 补液模型, 轧染, 定量分析, 拉曼光谱

Abstract:

Objective The color matching of dyes is prone to fail in obtaining the desired color in practical production. In the process of continuous pad dyeing, it is necessary to adjust constantly the liquid replenishment to ensure stable dye concentration in the dye bath to avoid color difference between the head and tail in the dyeing process. However, the goal of precise control of the dyeing process cannot be achieved by relying on the experience of dyeing and finishing masters, and replenishment modelling in pad dyeing becomes necessary.
Method In order to explore the digital control method of the replenishment system of mixed dye in the pad dyeing process, the replenishment model was established based on the real-time monitoring of the dyeing process with mixed dyes using Raman spectroscopy. Firstly, the quantitative analysis model of mixed dye concentration with C.I. Reactive Red 195 (RR195) and C.I. Reactive Blue 194 (RB194) was established based on Raman spectroscopy monitoring and partial least square method (PLS). Then, the initial dye uptake rate of RR195 and RB194 were obtained under different dyeing processing conditions. Finally, the replenishment model of the combination pad dyeing was established to calculate the amount of each dye to be added in real-time according to the conservation of mass with dye solution and dyes before and after replenishment, and compared with the replenishment system through the concentration of the original dye solution.
Results The results showed that the correlation coefficients of RR195 and RB194 dyes in the correction set and prediction set in the quantitative analysis model were greater than 0.990 0 (Fig.4), and the root mean square error of cross validation (RMSECV) and the root mean squared errors of prediction (RMSEP) were 0.279 0 and 0.129 0, 0.115 0 and 0.054 5, respectively. The fitting curves of the correction set and prediction set of the two dyes demonstrated a high coincidence. This suggested that the established quantitative analysis model had a high prediction capability. The real-time monitoring of the dyeing process of RR195 and RB194 were achieved by using the quantitative analysis model, according to which the color matching dyeing process of RR195 and RB194 (at a mass ratio 1:1) were obtained in real time. It is assumed that the soaking time of the fabric in the pad dye solution is 6 s, and the initial dye-uptake rate of RR195 and RB194 were calculated as 28.10 and 36.63 mg/(g·min) respectively according to the dye-uptake curves. By using the formula of the replenishment model, it was found that the volume of dye solution to be replenished after dyeing each fabric (3.0 g) was 2.15 mL, and the mass of RR195 and RB194 dyes to be replenished were 13.80 and 16.36 mg, respectively. The color difference of 25 fabrics after the pad dyeing through the replenishment system is maintained at 0.5, and the concentration of RR195 and RB194 in the dye solution remains unchanged. However, the color difference of 25 fabrics after the pad dyeing with original replenishment model is about 7, and the dye concentration of RR195 and RB194 was reduced by more than 50%, which verifies the accuracy of the replenishment model.
Conclusion The experimental results of RR195 and RB194 with color matching dyeing verifies the accuracy of the quantitative analysis model and replenishment model. The developed replenishment model helps control the replenishment system digitally without relying on the human experience, and it minimizes the color difference between the head and tail in the pad dyeing process of color matching. The quantitative analysis model of mixed dye concentration established by Raman spectroscopy and PLS can be used for mixing most dyes without decomposition spectrum. This approach is applicable to further explorations on the influencing factors and mechanism of color matching dyes, and on studying the quantitative evaluation method of color matching dyes.

Key words: mixed dyes, replenishment model, pad dyeing, quantitative analysis, Raman spectroscopy

中图分类号: 

  • TS193.5

图1

染料的结构式"

图2

RR195、RB194和2种染料等质量比混合染液的拉曼光谱图"

图3

RR195、RB194和Na2SO4水溶液的拉曼光谱图"

图4

校正集和预测集中各染料在定量分析模型中的计算质量浓度与实际质量浓度的拟合曲线"

图5

RR195和RB194染料拼色染色棉织物的上染量拟合曲线"

图6

以原染液与计算补液的浓度补液后轧染液中各染料质量浓度和不同批次样织物色差的变化"

[1] 缪毓镇. 活性染料三原色比移值与轧染稳定性的关系[J]. 印染, 2004, 30(23): 15-18.
LIAO Yuzhen. Relationship between specific shift value of reactive dyes and pad dyeing stability[J]. China Dyeing & Finishing, 2004, 30(23): 15-18.
[2] 武丰才. 活性染料的配伍性在轧染和印花中的应用[J]. 印染, 2000(6): 29-31.
WU Fengcai. Application of compatibility of reactive dyes in pad dyeing and printing[J]. China Dyeing & Finishing, 2000(6): 29-31.
[3] H.O. Bernhardt, 陈人哲. 活性染料轧染时不产生头梢色差的可能性[J]. 国际纺织导报, 2007(8): 54-56.
BERNHARDT H O, CHEN Renzhe. Possibility of no head tip color difference in pad dyeing with reactive dyes[J]. Melliand China, 2007(8): 54-56.
[4] DAI Y M, XU H, ZHONG Y, et al. Study on the effect of different dyeing systems on the interaction of multi-component reactive dyes by Raman spectroscopy[J]. Coloration Technology, 2021, 137(5): 520-529.
doi: 10.1111/cote.12549
[5] GIANSANTE S, GIANA H E, FERNANDES A B, et al. Analytical performance of Raman spectroscopy in assaying biochemical components in human serum[J]. Lasers in Medical Science, 2022, 37(1): 287-298.
doi: 10.1007/s10103-021-03247-8
[6] GENIS D O, SEZER B, DURNA S, et al. Determination of milk fat authenticity in ultra-filtered white cheese by using Raman spectroscopy with multivariate data analysis[J]. Food Chemistry, 2021.DOI: 10.1016/j.foodchem.2020.127699.
doi: 10.1016/j.foodchem.2020.127699
[7] DADOU S M, TIAN Y W, LI S, et al. The optimization of process analytical technology for the inline quantification of multiple drugs in fixed dose combinations during continuous processing[J]. International Journal of Pharmaceutics, 2021. DOI: 10.1016/j.ijpharm.2020.120024.
doi: 10.1016/j.ijpharm.2020.120024
[8] OMAR J, BOIX A, ULBERTH F. Raman spectroscopy for quality control and detection of substandard painkillers[J]. Vibrational Spectroscopy, 2020. DOI: 10.1016/j.vibspec.2020.103147.
doi: 10.1016/j.vibspec.2020.103147
[9] LI D G, ZHANG Q Y, DENG B G, et al. Rapid, sensitive detection of ganciclovir, penciclovir and valacyclovir-hydrochloride by artificial neural network and partial least squares combined with surface enhanced Raman spectroscopy[J]. Applied Surface Science, 2021.DOI: 10.1016/j.apsusc.2020.148224.
doi: 10.1016/j.apsusc.2020.148224
[10] NITIKA N, CHHABRA H, RATHORE A S. Raman spectroscopy for in situ, real time monitoring of protein aggregation in lyophilized biotherapeutic products[J]. International Journal of Biological Macromolecules, 2021, 179: 309-313.
doi: 10.1016/j.ijbiomac.2021.02.214 pmid: 33689770
[11] DING Q Z, SHEIKH A R, PAN W W, et al. In situ monitoring of grape seed protein hydrolysis by Raman spectroscopy[J]. Journal of Food Biochemistry, 2021.DOI: 10.1111/jfbc.13646.
doi: 10.1111/jfbc.13646
[12] ZAREEF M, HASSAN M M, ARSLAN M, et al. Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration[J]. Microchemical Journal, 2020.DOI: 10.1016/j.microc.2020.105431.
doi: 10.1016/j.microc.2020.105431
[1] 王瑞, 司银松, 芦浩浩, 杲爽, 傅雅琴. 基于近红外光谱法的桑蚕丝接枝率快速定量测定[J]. 纺织学报, 2022, 43(11): 29-34.
[2] 程绿竹, 王宗乾, 盛红梅, 钟辉, 夏丽萍. 锦纶织物中氯菊酯含量测试方法比较[J]. 纺织学报, 2022, 43(09): 143-148.
[3] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[4] 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115.
[5] 方帅军, 郑培晓, 程双娟, 李欢欢, 钱红飞. 甲基丙烯酰胺接枝桑蚕丝接枝率的数学模型构建与定量分析[J]. 纺织学报, 2022, 43(02): 156-161.
[6] 刘思佳, 喻倩, 王锐, 孔宪明. 再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测[J]. 纺织学报, 2020, 41(07): 23-28.
[7] 刘爱荣, 陈艳敏, 葛凤燕, 蔡再生, 王娟. 纤维基表面增强拉曼基底的研究进展[J]. 纺织学报, 2020, 41(05): 176-183.
[8] 王秋平, 毛志平, 钟毅, 徐红, 张琳萍. 平幅轧染中针织物形变对染色的影响[J]. 纺织学报, 2019, 40(11): 94-99.
[9] 陈磊, 裴克梅, 康晓静, 李文瑛, 赵丰, 刘剑. 表面增强拉曼光谱对纺织品文物中茜素和茜紫素的快速检测[J]. 纺织学报, 2019, 40(03): 76-82.
[10] 韦树琛 丁欣 李文霞 王华平 张朔. 废旧聚酯纤维制品近红外定量分析模型的建立及验证[J]. 纺织学报, 2018, 39(07): 63-68.
[11] 王岩 秦修远 沈蓓 施昌勇 龚龑. 亮布的结构分析及色彩成因[J]. 纺织学报, 2017, 38(07): 85-89.
[12] 叶志彪 孟婥 左硕 周明星 孙旭东 钱志鹏. 超声波辅助技术在棉/涤混纺纤维定量分析中的应用[J]. 纺织学报, 2016, 37(06): 27-31.
[13] 管瑜 张毅 于坤 邵路. 样本质量对近红外法预测远红外纤维含量的影响[J]. 纺织学报, 2014, 35(5): 19-0.
[14] 倪永 刘志红 胡腾蛟. PET、PTT与PBT材料的定性与定量鉴别方法[J]. 纺织学报, 2012, 33(10): 28-32.
[15] 陶丽珍;潘志娟;蒋耀兴;秦大可. 基于红外光谱的涤/棉混纺比定量分析[J]. 纺织学报, 2010, 31(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 张金秋;张华;郝新敏;姜凤琴. 大麻纤维高温煮练时间与脱胶质量的关系[J]. 纺织学报, 2006, 27(2): 81 -83 .
[3] 吕荣文;高崑玉. 超细纤维用分散染料染色性能研究[J]. 纺织学报, 2004, 25(04): 60 -61 .
[4] 陈维国;戴瑾瑾;王俊苏;贾成通;汪智勇;孟照成. 高耐光色牢度还原染料对涤纶织物的热熔法染色[J]. 纺织学报, 2008, 29(9): 82 -86 .
[5] 李重;. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005, 26(5): 101 -102 .
[6] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005, 26(5): 120 -121 .
[7] 李发学;张广平;吴丽莉;俞建勇. 三羟甲基乙烷/新戊二醇二元体系的DSC研究[J]. 纺织学报, 2004, 25(05): 59 -60 .
[8] 周赳;吴文正. 有彩数码提花织物的创新设计原理和方法[J]. 纺织学报, 2006, 27(5): 6 -9 .
[9] 李利君;蒲宗耀;李风;王桦;兰彬. 聚苯硫醚纤维的热降解动力学[J]. 纺织学报, 2010, 31(12): 4 -8 .
[10] 焦亚男;李嘉禄. 异制件用三维编织复合材料的拉伸性能[J]. 纺织学报, 2006, 27(9): 1 -4 .