纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 149-155.doi: 10.13475/j.fzxb.20211202007
万颖萍1, 王宗乾1(), 王英沣1, 杨海伟1, 吴开明2, 谢伟2
WAN Yingping1, WANG Zongqian1(), WANG Yingfeng1, YANG Haiwei1, WU Kaiming2, XIE Wei2
摘要:
为降低抗菌羽绒制备中的原绒损耗,缩短工艺流程,将抗菌整理剂加入羽绒最后一道漂洗浴中,经振荡浸渍、离心脱水、烘干制得抗菌羽绒。借助扫描电镜、傅里叶红外光谱仪等对羽绒结构进行表征,通过平板菌落计数法测试羽绒的抗菌性能,同时分析此工艺对羽绒基础指标的影响。结果表明:采用短流程工艺制得的抗菌羽绒其形貌、蓬松度不受影响,抗菌剂填充并附着在绒丝纤维表面凹纹和菱节夹角处,对金黄色葡萄球菌和大肠杆菌具有优异的抗菌性能,抑菌率达100.00%;经3次水洗,抗菌羽绒对金黄色葡萄球菌和大肠杆菌的抑菌率分别达到90.00%和66.18%,具有一定的耐水洗性能;短流程抗菌工艺降低了对原料绒的损伤,抗菌羽绒的清洁度、残脂率、耗氧量、气味并未发生明显变化。
中图分类号:
[1] | 应丽丽, 李长龙, 王宗乾, 等. 植酸作用下锆离子修饰羽绒及其保温性能[J]. 纺织学报, 2020, 41(10): 94-100. |
YING Lili, LI Changlong, WANG Zongqian, et al. Zirconium ion modified down and its thermal insulation performance under the action of phytic acid[J]. Journal of Textile Research, 2020, 41(10): 94-100. | |
[2] |
QIANG T T, ZHANG Q, CHEN L. A clean and economical processing system to improve the fluffiness of down fibers based on alkalized Zr (SO4)2[J]. Journal of Cleaner Production, 2019. DOI: 10.1016/j.jclepro.2019.117625.
doi: 10.1016/j.jclepro.2019.117625 |
[3] |
YANG S, LI M, SHEN X J. Fractal approach to structure and thermal property of down fiber assembly[J]. Journal of Natural Fibers, 2018, 15(6): 853-859.
doi: 10.1080/15440478.2017.1376300 |
[4] |
KAWADA T, KUROYANAGI J, OKAZAKI F, et al. An integrative evaluation method for the biological safety of down and feather materials[J]. International Journal of Molecular Sciences, 2019. DOI: 10.3390/ijms20061434.
doi: 10.3390/ijms20061434 |
[5] |
MORAIS D S, GUEDES R M, LOPES M A. Antimicrobial approaches for textiles: from research to market[J]. Materials, 2016. DOI: 10.1111/all.13683.
doi: 10.1111/all.13683 |
[6] |
SHENTU X Y, GUAN Y, WANG L L, et al. Preparation of antibacterial down fibers by chemical grafting using novel guanidine salt oligomer[J]. Polymers for Advanced Technologies, 2021, 32(10): 4082-4093.
doi: 10.1002/pat.5415 |
[7] | 高雪, 李政, 巩继贤, 等. 新型纺织用生物基抗菌整理剂的研究进展[J]. 纺织学报, 2020, 41(2): 187-192. |
GAO Xue, LI Zheng, GONG Jixian, et al. Research progress of new bio-based antibacterial finishing agents for textiles[J]. Journal of Textile Research, 2020, 41(2): 187-192.
doi: 10.1177/004051757104100301 |
|
[8] | 徐光年, 金俊成. 新型羽(毛)绒抗菌整理剂:季铵盐羟基硅乳复合物的制备及其性能[J]. 化工新型材料, 2014, 42(3): 57-59. |
XU Guangnian, JIN Juncheng. Preparation and properties of a new type of feather (hair) down antibacterial finishing agent: quaternary ammonium salt hydroxyl silicone emulsion compound[J]. New Chemical Materials, 2014, 42(3): 57-59. | |
[9] | DILLE J W, ROGERS C M, SCHNEEGURT M A. Isolation and characterization of bacteria from the feathers of wild dark-eyed Juncos (Junco hyemalis)[J]. The Auk: Ornithological Advances, 2016, 133(2): 155-167. |
[10] |
LIU Y Y, CHEN X Q, XIN J H. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment[J]. Bioinspiration & Biomimetics, 2008. DOI: 10.1088/1748-3182/3/4/046007.
doi: 10.1088/1748-3182/3/4/046007 |
[11] |
FANG J, ZHANG G Z, MENG C. Natural recyclable high-efficiency oil-water separation and interfacial dye adsorption material: duck down fiber[J]. Journal of Natural Fibers, 2021, 19(3): 1-12.
doi: 10.1080/15440478.2020.1726247 |
[12] | 江娟, 黎彧, 冯安生, 等. 掺铁氧化锌协同微波的羽绒抗菌工艺研究[J]. 棉纺织技术, 2018, 46(1): 37-39. |
JIANG Juan, LI Yu, FENG Ansheng, et al. Study on the antibacterial process of down and down with iron-doped zinc oxide and microwave[J]. Cotton Textile Technology, 2018, 46(1): 37-39. | |
[13] | DŁUGOSZ M, BULWAN M, KANIA G, et al. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents[J]. Journal of Nanoparticle Research, 2012, 14(12): 1-8. |
[14] |
HAJIPOUR M J, FROMM K M, ASHKARRAN A A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012, 30(10): 499-511.
doi: 10.1016/j.tibtech.2012.06.004 pmid: 22884769 |
[15] | 沈金金, 吴鲜鲜, 叶翔宇, 等. 抗菌羽绒产品抗菌性能测试方法研究[J]. 中国纤检, 2019(5): 66-69. |
SHEN Jinjin, WU Xianxian, YE Xiangyu, et al. Research on the test method of antibacterial performance of antibacterial down products[J]. China Fiber Inspection, 2019(5): 66-69. | |
[16] |
SUN R X, WANG Z Q, PAN N, et al. A new technique to clean down and feather dust: composition and resolution of down dust[J]. Textile Research Journal, 2019, 89(15): 3080-3088.
doi: 10.1177/0040517518809047 |
[17] |
SHARMA S, GUPTA A, CHIK S M S T, et al. Study of different treatment methods on chicken feather biomass[J]. IIUM Engineering Journal, 2017, 18(2): 47-55.
doi: 10.31436/iiumej.v18i2.806 |
[18] |
TESFAYE T, SITHOLE B, RAMJUGERNATH D, et al. Optimisation of surfactant decontamination and pre-treatment of waste chicken feathers by using response surface methodology[J]. Waste Management, 2018, 72: 371-388.
doi: S0956-053X(17)30812-7 pmid: 29132781 |
[19] | SAHIN U K. Chemical treatment of chicken feather prior to use as filling material[J]. Tekstil ve Konfeksiyon, 2018, 28(3): 207-212. |
[20] |
WANG Y F, YIN M L, LIN X H, et al. Tailored synthesis of polymer-brush-grafted mesoporous silica with N-halamine and quaternary ammonium groups for antimicrobial applications[J]. Journal of Colloid and Interface Science, 2019, 533: 604-611.
doi: 10.1016/j.jcis.2018.08.080 |
[21] |
WANG Z Q, WAN Y P, ZHENG X H, et al. Enhancing the radiative heating performance of down fibers by layer-by-layer self-assembly[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.126760.
doi: 10.1016/j.jclepro.2021.126760 |
[22] |
SADAT A, JOYE I J. Peak fitting applied to Fourier transform infrared and Raman spectroscopic analysis of proteins[J]. Applied Sciences, 2020. DOI: 10.3390/app10175918.
doi: 10.3390/app10175918 |
[23] |
XU Q B, YANG J, ZHANG X J, et al. A ″grafting through″ strategy for constructing Janus cotton fabric by mist polymerization[J]. Journal of Materials Chemistry A, 2020, 8(46): 24553-24562.
doi: 10.1039/D0TA08538C |
[24] | 王娜娜, 陈英. 新型双季铵盐阳离子改性剂的合成及其对棉织物的无盐染色性能[J]. 印染助剂, 2021, 38(2): 23-27. |
WANG Na'na, CHEN Ying. Synthesis of a new type of double quaternary ammonium salt cationic modifier and its salt-free dyeing performance on cotton fabrics[J]. Textile Auxiliaries, 2021, 38(2): 23-27. | |
[25] |
ZHANG S B, YANG X H, TANG B, et al. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine[J]. Chemical Engineering Journal, 2018, 336: 123-132.
doi: 10.1016/j.cej.2017.10.168 |
[26] | 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6): 14-20. |
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial properties of polyacrylonitrile antibacterial composite nanofiber membrane[J]. Journal of Textile Research, 2020, 41(6): 14-20. | |
[27] |
LI H, QI L, LI J. Effects of DTAC on the warmth retention of down fiber based on response surface method[J]. Fibers and Polymers, 2016, 17(7): 1115-1122.
doi: 10.1007/s12221-016-5796-1 |
[28] |
OCHREM A, GUMUŁKA M, GUCIA M. Effect of repeated gathering and aging on the quality of zatorska goose feathers[J]. The Journal of Poultry Science, 2018. DOI: 10.2141/jpsa.0170045.
doi: 10.2141/jpsa.0170045 |
[1] | 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55. |
[2] | 夏勇, 赵迎, 徐利云, 徐思峻, 姚理荣, 高强. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(01): 64-70. |
[3] | 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117. |
[4] | 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8. |
[5] | 张文欢, 江舒, 李俊. 羽绒服装系统的面积因子预测及适用性分析[J]. 纺织学报, 2022, 43(11): 148-153. |
[6] | 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162. |
[7] | 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211. |
[8] | 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136. |
[9] | 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(09): 167-174. |
[10] | 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106. |
[11] | 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47. |
[12] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[13] | 杨尧, 程伟, 余圆圆, 王强, 王平, 周曼. 抗菌和防细菌黏附整理剂在棉织物改性中的应用[J]. 纺织学报, 2022, 43(07): 104-110. |
[14] | 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205. |
[15] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
|