纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 149-155.doi: 10.13475/j.fzxb.20211202007

• 染整与化学品 • 上一篇    下一篇

抗菌羽绒的短流程制备及其性能

万颖萍1, 王宗乾1(), 王英沣1, 杨海伟1, 吴开明2, 谢伟2   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽古麒绒材股份有限公司, 安徽 芜湖 241008
  • 收稿日期:2021-12-09 修回日期:2022-09-15 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 王宗乾(1982—),男,教授,博士。主要研究方向为功能化纤维结构调控与成形技术。E-mail:wzqian@ahpu.edu.cn
  • 作者简介:万颖萍(1997—),女,硕士生。主要研究方向为生态染整技术与功能纺织品。
  • 基金资助:
    安徽省重点研究与开发计划项目(202004a06020055);安徽省重点研究与开发计划项目(2022a05020029);安徽省高校学科(专业)中青年拔尖人才学术资助项目(gxbjZD2020075);安徽省学术和技术带头人及后备人选学术科研活动资助项目(2020H218);芜湖市科技计划项目(2020yf14);安徽省博士后科研项目(2021A486);安徽高校研究生科学研究项目(YJS20210450)

Short-process flow preparation and performance of antibacterial down

WAN Yingping1, WANG Zongqian1(), WANG Yingfeng1, YANG Haiwei1, WU Kaiming2, XIE Wei2   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Anhui Guqi Down & Feather Textile Incorporated, Wuhu, Anhui 241008, China
  • Received:2021-12-09 Revised:2022-09-15 Published:2023-01-15 Online:2023-02-16

摘要:

为降低抗菌羽绒制备中的原绒损耗,缩短工艺流程,将抗菌整理剂加入羽绒最后一道漂洗浴中,经振荡浸渍、离心脱水、烘干制得抗菌羽绒。借助扫描电镜、傅里叶红外光谱仪等对羽绒结构进行表征,通过平板菌落计数法测试羽绒的抗菌性能,同时分析此工艺对羽绒基础指标的影响。结果表明:采用短流程工艺制得的抗菌羽绒其形貌、蓬松度不受影响,抗菌剂填充并附着在绒丝纤维表面凹纹和菱节夹角处,对金黄色葡萄球菌和大肠杆菌具有优异的抗菌性能,抑菌率达100.00%;经3次水洗,抗菌羽绒对金黄色葡萄球菌和大肠杆菌的抑菌率分别达到90.00%和66.18%,具有一定的耐水洗性能;短流程抗菌工艺降低了对原料绒的损伤,抗菌羽绒的清洁度、残脂率、耗氧量、气味并未发生明显变化。

关键词: 羽绒, 水洗, 抗菌, 短流程, 抑菌率, 蓬松度

Abstract:

Objective Down has the characteristics of lightweight, high fluffiness and low thermal conductivity, resulting in excellent thermal insulation performance, and is widely used in cold-resistant textiles. However, it is eroded by exogenous contaminants, especially after absorbing sweat vapor emitted by the human body, causing the adhered bacteria to proliferate rapidly and develop odor which adversely affect the life quality and health. Research and treatment of down with antibacterial functions will greatly alleviate the bacterial breeding and associated problems of down products, and meet the market demand which is of great significance.
Method In order to reduce the loss of down during down processing for antibacterial performance, antibacterial finishing agents were added in the final rinsing bath. After shocking, soaking, centrifuging and drying, the antibacterial down was obtained. The original and finished down were characterized with scanning electron microscopy (SEM), X-ray energy spectrometry (EDS), and Fourier-transform infrared spectrometry (FT-IR). The antibacterial properties of each sample were tested with the plate colony counting method, and the effect of quick antibacterial processing of down was evaluated simultaneously.
Results In the experiment, the chemical structure of down before and after the antibacterial agent finishing were analyzed by FT-IR (Fig.2). The new characteristic absorption signal peak of the antibacterial down appeared at 1 468 and 1 086 cm-1, which was attributed the characteristic absorption of C-N+ groups in the molecular structure of the cationic quaternary ammonium salt antibacterial agent, indicating the antibacterial agent had been successfully attached to down after finishing. The micromorphologies of the down before and after antibacterial finishing were tested and characterized by SEM (Fig.1). The morphology and fluffiness of the antibacterial down were not affected by the quick processing, and the antibacterial agent was filled in and attached to the grooves and angles of the velvet fiber surface. The antibacterial performance test of down was carried out by the plate colony counting method (Fig.4). No strain appeared in the test surface dishes, and the bacteriostatic rate (BR) reached 100.00%, indicating that the antibacterial down had excellent antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). These results indicate sufficient amount of antibacterial agent were adhered to the down surface, showing a broad spectrum of antibacterial performance, which can efficiently sanitize gram-positive bacteria and negative bacteria (Tab.1). After 3 cycles of washing, the BR values of finished down against S. aureus and E. coli remained at 90.00% and 66.18% (Fig.5), respectively, suggesting high water resistance. The basic performance indicators before and after down antibacterial finishing were compared and analyzed, and the impact of the quick antibacterial processing on the fluffy quality of down was slight, and the cleanness, residual fat rate, oxygen consumption and odor of antibacterial down were not affected significantly (Fig.6, Tab.2).
Conclusion The antibacterial finishing of down and the bath treatment of water washing have the advantage of quick process, and the new technology overcomes the shortcomings of dryness and fluffy, which hinders the applications in infiltration and functional finishing. The finishing process is quick, convenient and easy to operate, reducing the loss of raw lint during the preparation of antibacterial down. The antibacterial agent used in this research is an environmentally friendly functional finishing agent, and the down fiber after the antibacterial agent finishing has excellent antibacterial properties, which does not affect the quality of the down.

Key words: down, washing, antibacterial, short-process flow processing, inhibition rate, fluffiness

中图分类号: 

  • TS195.6

图1

不同羽绒的微观形貌"

图2

不同羽绒的红外光谱图"

图3

不同羽绒的SEM照片和N元素分布图"

图4

不同羽绒抗菌测试效果图 a1—羽绒原样对金黄色葡萄球菌的抗菌图片;a2—抗菌羽绒对金黄色葡萄球菌的抗菌图片;b1—羽绒原样对大肠杆菌的抗菌图片;b2—抗菌羽绒对大肠杆菌的抗菌图片。"

表1

羽绒样品对金黄色葡萄球菌和大肠杆菌的抗菌效果"

实验菌种 样品 细菌总数/
(CFU·mL-1)
抑菌率/
%
金黄色葡萄球菌 无菌水对照样 3.60×107
羽绒 2.70×107 25.00
抗菌羽绒 0 100.00
大肠杆菌 无菌水对照样 1.02×107
羽绒 7.50×106 26.47
抗菌羽绒 0 100.00

图5

水洗对抗菌羽绒抗菌性能的影响"

图6

不同羽绒的宏观形貌及其蓬松性能"

表2

羽绒基础性能对比分析"

样品 单根绒丝质量
占比/%
耗氧量/
(mg·(100 g)-1)
浊度/
mm
残脂率/
%
气味
羽绒 11.52 5.20 960 1.00
抗菌羽绒 11.58 5.12 962 1.02 无异味
[1] 应丽丽, 李长龙, 王宗乾, 等. 植酸作用下锆离子修饰羽绒及其保温性能[J]. 纺织学报, 2020, 41(10): 94-100.
YING Lili, LI Changlong, WANG Zongqian, et al. Zirconium ion modified down and its thermal insulation performance under the action of phytic acid[J]. Journal of Textile Research, 2020, 41(10): 94-100.
[2] QIANG T T, ZHANG Q, CHEN L. A clean and economical processing system to improve the fluffiness of down fibers based on alkalized Zr (SO4)2[J]. Journal of Cleaner Production, 2019. DOI: 10.1016/j.jclepro.2019.117625.
doi: 10.1016/j.jclepro.2019.117625
[3] YANG S, LI M, SHEN X J. Fractal approach to structure and thermal property of down fiber assembly[J]. Journal of Natural Fibers, 2018, 15(6): 853-859.
doi: 10.1080/15440478.2017.1376300
[4] KAWADA T, KUROYANAGI J, OKAZAKI F, et al. An integrative evaluation method for the biological safety of down and feather materials[J]. International Journal of Molecular Sciences, 2019. DOI: 10.3390/ijms20061434.
doi: 10.3390/ijms20061434
[5] MORAIS D S, GUEDES R M, LOPES M A. Antimicrobial approaches for textiles: from research to market[J]. Materials, 2016. DOI: 10.1111/all.13683.
doi: 10.1111/all.13683
[6] SHENTU X Y, GUAN Y, WANG L L, et al. Preparation of antibacterial down fibers by chemical grafting using novel guanidine salt oligomer[J]. Polymers for Advanced Technologies, 2021, 32(10): 4082-4093.
doi: 10.1002/pat.5415
[7] 高雪, 李政, 巩继贤, 等. 新型纺织用生物基抗菌整理剂的研究进展[J]. 纺织学报, 2020, 41(2): 187-192.
GAO Xue, LI Zheng, GONG Jixian, et al. Research progress of new bio-based antibacterial finishing agents for textiles[J]. Journal of Textile Research, 2020, 41(2): 187-192.
doi: 10.1177/004051757104100301
[8] 徐光年, 金俊成. 新型羽(毛)绒抗菌整理剂:季铵盐羟基硅乳复合物的制备及其性能[J]. 化工新型材料, 2014, 42(3): 57-59.
XU Guangnian, JIN Juncheng. Preparation and properties of a new type of feather (hair) down antibacterial finishing agent: quaternary ammonium salt hydroxyl silicone emulsion compound[J]. New Chemical Materials, 2014, 42(3): 57-59.
[9] DILLE J W, ROGERS C M, SCHNEEGURT M A. Isolation and characterization of bacteria from the feathers of wild dark-eyed Juncos (Junco hyemalis)[J]. The Auk: Ornithological Advances, 2016, 133(2): 155-167.
[10] LIU Y Y, CHEN X Q, XIN J H. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment[J]. Bioinspiration & Biomimetics, 2008. DOI: 10.1088/1748-3182/3/4/046007.
doi: 10.1088/1748-3182/3/4/046007
[11] FANG J, ZHANG G Z, MENG C. Natural recyclable high-efficiency oil-water separation and interfacial dye adsorption material: duck down fiber[J]. Journal of Natural Fibers, 2021, 19(3): 1-12.
doi: 10.1080/15440478.2020.1726247
[12] 江娟, 黎彧, 冯安生, 等. 掺铁氧化锌协同微波的羽绒抗菌工艺研究[J]. 棉纺织技术, 2018, 46(1): 37-39.
JIANG Juan, LI Yu, FENG Ansheng, et al. Study on the antibacterial process of down and down with iron-doped zinc oxide and microwave[J]. Cotton Textile Technology, 2018, 46(1): 37-39.
[13] DŁUGOSZ M, BULWAN M, KANIA G, et al. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents[J]. Journal of Nanoparticle Research, 2012, 14(12): 1-8.
[14] HAJIPOUR M J, FROMM K M, ASHKARRAN A A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012, 30(10): 499-511.
doi: 10.1016/j.tibtech.2012.06.004 pmid: 22884769
[15] 沈金金, 吴鲜鲜, 叶翔宇, 等. 抗菌羽绒产品抗菌性能测试方法研究[J]. 中国纤检, 2019(5): 66-69.
SHEN Jinjin, WU Xianxian, YE Xiangyu, et al. Research on the test method of antibacterial performance of antibacterial down products[J]. China Fiber Inspection, 2019(5): 66-69.
[16] SUN R X, WANG Z Q, PAN N, et al. A new technique to clean down and feather dust: composition and resolution of down dust[J]. Textile Research Journal, 2019, 89(15): 3080-3088.
doi: 10.1177/0040517518809047
[17] SHARMA S, GUPTA A, CHIK S M S T, et al. Study of different treatment methods on chicken feather biomass[J]. IIUM Engineering Journal, 2017, 18(2): 47-55.
doi: 10.31436/iiumej.v18i2.806
[18] TESFAYE T, SITHOLE B, RAMJUGERNATH D, et al. Optimisation of surfactant decontamination and pre-treatment of waste chicken feathers by using response surface methodology[J]. Waste Management, 2018, 72: 371-388.
doi: S0956-053X(17)30812-7 pmid: 29132781
[19] SAHIN U K. Chemical treatment of chicken feather prior to use as filling material[J]. Tekstil ve Konfeksiyon, 2018, 28(3): 207-212.
[20] WANG Y F, YIN M L, LIN X H, et al. Tailored synthesis of polymer-brush-grafted mesoporous silica with N-halamine and quaternary ammonium groups for antimicrobial applications[J]. Journal of Colloid and Interface Science, 2019, 533: 604-611.
doi: 10.1016/j.jcis.2018.08.080
[21] WANG Z Q, WAN Y P, ZHENG X H, et al. Enhancing the radiative heating performance of down fibers by layer-by-layer self-assembly[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.126760.
doi: 10.1016/j.jclepro.2021.126760
[22] SADAT A, JOYE I J. Peak fitting applied to Fourier transform infrared and Raman spectroscopic analysis of proteins[J]. Applied Sciences, 2020. DOI: 10.3390/app10175918.
doi: 10.3390/app10175918
[23] XU Q B, YANG J, ZHANG X J, et al. A ″grafting through″ strategy for constructing Janus cotton fabric by mist polymerization[J]. Journal of Materials Chemistry A, 2020, 8(46): 24553-24562.
doi: 10.1039/D0TA08538C
[24] 王娜娜, 陈英. 新型双季铵盐阳离子改性剂的合成及其对棉织物的无盐染色性能[J]. 印染助剂, 2021, 38(2): 23-27.
WANG Na'na, CHEN Ying. Synthesis of a new type of double quaternary ammonium salt cationic modifier and its salt-free dyeing performance on cotton fabrics[J]. Textile Auxiliaries, 2021, 38(2): 23-27.
[25] ZHANG S B, YANG X H, TANG B, et al. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine[J]. Chemical Engineering Journal, 2018, 336: 123-132.
doi: 10.1016/j.cej.2017.10.168
[26] 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6): 14-20.
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial properties of polyacrylonitrile antibacterial composite nanofiber membrane[J]. Journal of Textile Research, 2020, 41(6): 14-20.
[27] LI H, QI L, LI J. Effects of DTAC on the warmth retention of down fiber based on response surface method[J]. Fibers and Polymers, 2016, 17(7): 1115-1122.
doi: 10.1007/s12221-016-5796-1
[28] OCHREM A, GUMUŁKA M, GUCIA M. Effect of repeated gathering and aging on the quality of zatorska goose feathers[J]. The Journal of Poultry Science, 2018. DOI: 10.2141/jpsa.0170045.
doi: 10.2141/jpsa.0170045
[1] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[2] 夏勇, 赵迎, 徐利云, 徐思峻, 姚理荣, 高强. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(01): 64-70.
[3] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[4] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[5] 张文欢, 江舒, 李俊. 羽绒服装系统的面积因子预测及适用性分析[J]. 纺织学报, 2022, 43(11): 148-153.
[6] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[7] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[8] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[9] 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(09): 167-174.
[10] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[11] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[12] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[13] 杨尧, 程伟, 余圆圆, 王强, 王平, 周曼. 抗菌和防细菌黏附整理剂在棉织物改性中的应用[J]. 纺织学报, 2022, 43(07): 104-110.
[14] 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205.
[15] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!