纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 194-200.doi: 10.13475/j.fzxb.20211204607

• 机械与器材 • 上一篇    下一篇

基于支持向量机的筒子纱纱管品种检测

马传旭, 张宁, 潘如如()   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2021-12-22 修回日期:2022-10-08 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 潘如如(1982—),男,教授,博士。主要研究方向为数字化纺织技术。E-mail:prrsw@163.com
  • 作者简介:马传旭(1998—),男,硕士生。主要研究方向为基于机器视觉的筒子纱纱管检测。
  • 基金资助:
    国家自然科学基金项目(61976105);中国纺织工业联合会基础研究项目(J202006)

Detection of cheese yarn bobbin varieties based on support vector machine

MA Chuanxu, ZHANG Ning, PAN Ruru()   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-12-22 Revised:2022-10-08 Published:2023-01-15 Online:2023-02-16

摘要:

为了对运输导轨上筒子纱的纱管品种进行检测,提出一种基于纱管图像分类的品种检测方法。首先通过搭建的采集装置采集筒子纱顶部包含纱管信息的图像,运用阈值分割和椭圆拟合得到纱管区域,利用极坐标变换将纱管圆环展开成矩形图像,然后使用HSV颜色直方图和局部二值模式分别提取纱管展开图像的颜色特征和纹理特征,最后通过支持向量机构建筒子纱纱管品种分类模型实现纱管品种检测。采用建立的纱管品种检测分类数据集进行实验,结果表明,本文方法相比于其它特征组合和分类器,具有更高的分类准确率,对相同图案的星型纱管、黑色系花纹纱管和混合纱管的分类准确率达100%,可为纺纱企业筒子纱纱管品种检测与运输包装提供参考。

关键词: 筒子纱纱管, 支持向量机, 极坐标变换, 特征提取, 图像分类, 品种检测

Abstract:

Objective Aiming at variety detection of cheese yarn on the transport guide rail in practical situations, this paper proposed an automatic solution based on image processing. Based on the characteristics of bobbin, a yarn variety detection method based on bobbin image classification was proposed to replace subjective judgment. The method proposed in this paper is aimed to reduce error rate of manual detection and labor costs, and to improve the production efficiency of spinning.
Method In order to facilitate feature extraction, the original image of cheese yarn was processed by the image segmentation method to obtain the bobbin area. Then, the segmented image of the annular bobbin was expanded into a square image by polar coordinate transformation. Color and texture features were extracted from the expanded image and optimized based on feature classification experiments and the elapsed time to jointly characterize the bobbin image.
Results The Otsu threshold method was adopted to find the gray threshold of the bobbin foreground and background, and a binary image was obtained based on the determined threshold. The image contour was used to filter non-target regions in the binary image by setting the area and perimeter threshold of the bobbin region. The binary image containing only the region of the bobbin was adopted as a mask to segment the yarn tube from the original cheese yarn image. For the segmented annular yarn tube, the polar coordinate transformation was applied to transform it into a rectangular image with the circumference of the outer circle and the width of the outer circle. Bobbin image expanded after threshold segmentation provided data support for subsequent research. The non-uniform quantized color histogram features with H:S:V=8:3:3 were optimized by the classification accuracy and the elapsed time of feature extraction (Tab.1). The features obtained by the preferred color quantization method demonstrated satisfactory classification effect on different types of bobbin images with the acceptable calculation time. The performance of different local binary pattern operators was optimized by the bobbin classification experiments. The operator of rotation invariant equivalent LBP16,2 with the sampling point of 16 and the sampling radius of 2 was optimized to extract the texture features of the bobbin image (Tab.2). The experiments using the fusion feature were performed on bobbin with the same color, the same pattern, different colors and patterns and the results proved that the fusion feature is able to adapt to the bobbin classification detection task in the three cases (Tab.3). The classification results of different feature combinations under the same classification model and the performance of fusion features on different classifiers proved that the method of combining color and texture and support vector machine classification model is effective for bobbin detection (Tab.4, Tab.5).
Conclusion The combination of Otsu threshold method and image contour is successfully used to segment the bobbin from the original image, and it is shown that the bobbin image expanded by polar coordinate transformation can facilitate feature extraction. The optimal technique to characterize the color information of the bobbin image is proven to be the non-uniform quantization color histogram feature of H:S:V= 8:3:3. The preferred way to characterize the texture features of the bobbin image is the histogram feature of the rotation invariant equivalent LBP16,2. The fusion of the two features can deal with the classification detection tasks of the bobbin in the same color, the same pattern, and different colors and patterns. Different classifiers were compared by the experiments and support vector machine was selected as the optimal classification model because of the best performance. The classification accuracy of this method is 100% in the same pattern of star pattern bobbin, black pattern bobbin and mixed pattern bobbin, which is the highest among different methods. The proposed method has practical value for variety detection of bobbin on the transport guide rail.

Key words: bobbin, support vector machine, polar coordinate transformation, feature extraction, image classification, variety detection

中图分类号: 

  • TS101.9

图1

筒子纱图像采集装置"

图2

预处理各阶段图像"

图3

不同尺度LBP算子"

图4

SVM分类示意图 注:w为平面上的法向量,决定超平面的方向;b为实数,代表超平面到原点的距离。"

图5

K折交叉验证示意图 注:Ei表示第i次交叉验证的测试结果,i=1,2,…,K。"

图6

筒子纱纱管品种检测流程图"

图7

实验用纱管图像矩形展开图"

表1

颜色量化方式优选"

量化方式(H:S:V) 准确率/% 特征提取用时/ms
8:3:3 100 15.6
16:4:4 100 18.7
32:8:8 100 25.1

表2

局部二值模式算子优选"

LBP算子 准确率/% 特征提取用时/ms
LBP8,1 56.67 4.7
LBP16,2 96.67 7.8
LBP24,3 94.00 14.1

表3

支持向量机参数优选及纱管分类结果"

特征提取 样本 参数 准确率/%
C γ
融合特征 A 2.069 2.069 100
B 0.346 1.035 100
A+B 2.069 3.104 100

表4

不同特征组合纱管分类结果"

特征组合 参数 准确率/%
C γ
CH+LBP 2.069 3.104 100.00
CM+LBP 4.138 3.104 100.00
CH+GLCM 10.000 6.207 97.92
CM+GLCM 7.931 20.690 97.08

表5

不同分类器对纱管分类结果"

分类器 参数 准确率/%
KNN n=1 98.75
DT d=39 96.25
SVM C=2.069,γ=3.104 100.00
[1] 朱苏康, 高卫东. 机织学[M]. 北京: 中国纺织出版社, 2008: 2-3.
ZHU Sukang, GAO Weidong. Weaving science[M]. Beijing: China Textile & Apparel Press, 2008: 2-3.
[2] 任慧娟, 金守峰, 顾金芋. 基于颜色特征的筒纱分拣机器人识别定位方法[J]. 轻工机械, 2020, 38(4): 60-62.
REN Huijuan, JIN Shoufeng, GU Jinyu. Identification and positioning method of cheese sorting robot based on color feature[J]. Light Industry Machinery, 2020, 38(4): 60-62.
[3] 陈纪旸. 筒纱识别追溯管理系统的研究与设计[D]. 济南: 山东大学, 2017: 9-12.
CHEN Jiyang. Research and design of cheese information tracking system[D]. Ji'nan: Shandong University, 2017: 9-12.
[4] 倪弈棋, 管声启, 管宇灿, 等. 基于改进的SSD深度学习算法的双目视觉纱筒识别定位[J]. 纺织高校基础科学学报, 2021, 34(2): 60-65.
NI Yiqi, GUAN Shengqi, GUAN Yucan, et al. Binocular vision bobbin identification and positioning based on improved SSD deep learning algorithm[J]. Basic Sciences Journal of Textile Universities, 2021, 34(2): 60-65.
[5] 应龙, 吴玲达, 栾悉道. 基于动态局部颜色直方图的图像检索[J]. 系统工程理论与实践, 2006, 26(11): 94-95.
YING Long, WU Lingda, RUAN Xidao. Image retrieval based on dynamic local color histogram[J]. Systems Engineering-Theory & Practice, 2006, 26(11): 94-95.
[6] YUE Jun, LI Zhenbo, LIU Lu, et al. Content-based image retrieval using color and texture fused features[J]. Mathematical and Computer Modelling, 2011, 54(3): 1121-1127.
doi: 10.1016/j.mcm.2010.11.044
[7] TIMO O, MATTI P, DAVID H. A comparative study of texture measures with classification based on feature[J]. Pattern Recognition, 1996, 29(1): 51-58.
doi: 10.1016/0031-3203(95)00067-4
[8] ROBERT M, HARALICK K, SHANMUGAM I D. Textural features for image classification[J]. Transactions on Systems Man and Cybernetics, 1973, 3(6): 611-621.
[9] FAWWAZ T, ULABY F, KOUYATE B, et al. Textural information in SAR images[J]. Transactions on Geoscience and Remote Sensing, 1986, 24(2): 235-245.
[10] 罗来平, 宫辉力, 刘先林. 基于决策树算法的遥感图像分类研究与实现[J]. 计算机应用研究, 2007, 24(1): 207-209.
LUO Laiping, GONG Huili, LIU Xianlin. Research and implementation of classification in remote sensing image based on decision tree algorithm[J]. Application Research of Computers, 2007, 24(1): 207-209.
[11] 万华林. 基于支持向量机的图像语义分类[J]. 软件学报, 2003, 14(11): 1891-1899.
WAN Huanlin. Image semantic classification by using SVM[J]. Journal of Software, 2003, 14(11):1891-1899.
[12] 刘沐黎, 袁理, 杨亚莉, 等. 色纺机织物组织结构对其呈色特性的影响[J]. 纺织学报, 2020, 41(9): 45-52.
LIU Muli, YUAN Li, YANG Yali, et al. Influence of fabric weaves on characteristics of colored patterns in color-woven fabrics[J]. Journal of Textile Research, 2020, 41(9): 45-52.
[13] 张宁, 潘如如, 高卫东. 采用图像处理的织物缝纫平整度自动评估[J]. 纺织学报, 2017, 38(4): 145-150.
ZHANG Ning, PAN Ruru, GAO Weidong. Automatic seam-puckering evaluation using image processing[J]. Journal of Textile Research, 2017, 38(4): 145-150.
[1] 金关秀, 祝成炎. 基于图像模拟和支持向量机的复合非织造布孔隙尺寸预测[J]. 纺织学报, 2022, 43(12): 75-81.
[2] 徐增波, 张玲, 张艳红, 陈桂清. 基于复杂网络提取和支持向量机模型分类的服装领型研究[J]. 纺织学报, 2021, 42(06): 146-152.
[3] 郑晓萍, 刘成霞. 基于激光测量的机织服装起拱性客观评价[J]. 纺织学报, 2021, 42(05): 143-149.
[4] 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(06): 125-131.
[5] 龚雪, 袁理, 刘军平, 杨亚莉, 刘沐黎, 柯政涛, 鄢煜尘. 混合色彩空间与多核学习的色纺织物组织点识别[J]. 纺织学报, 2020, 41(05): 58-65.
[6] 汪会, 孙洁, 丁笑君, 龙颖, 邹奉元. 织物纹样特征提取与匹配方法比较[J]. 纺织学报, 2020, 41(04): 45-50.
[7] 孙洁, 丁笑君, 杜磊, 李秦曼, 邹奉元. 基于卷积神经网络的织物图像特征提取与检索研究进展[J]. 纺织学报, 2019, 40(12): 146-151.
[8] 石康君, 王静安, 高卫东. 基于傅里叶频谱特征的织物平整度客观评级[J]. 纺织学报, 2019, 40(11): 50-56.
[9] 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
[10] 赵树志 狄岚 何锐波. 基于改进判别性完整局部二值模式与格分割的织物瑕疵检测方法[J]. 纺织学报, 2018, 39(09): 57-64.
[11] 李佳平 沈国康 欧耀明 孟想 辛斌杰. 应用连续投影算法及最小二乘支持向量机的单组分纺织品识别[J]. 纺织学报, 2018, 39(08): 46-51.
[12] 金关秀 张毅 楼永平 祝成炎. 应用粗糙集和支持向量机的熔喷非织造布过滤性能预测[J]. 纺织学报, 2018, 39(06): 142-148.
[13] 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24.
[14] 张建新 张银露 胡旭东. 光谱优化处理结合多层次支持向量机的混合染液浓度检测方法[J]. 纺织学报, 2017, 38(07): 90-94.
[15] 李东 万贤福 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(05): 122-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!