纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 209-218.doi: 10.13475/j.fzxb.20220102010
CHEN Mingxing1,2, ZHANG Wei1,2, WANG Xinya1,2(), XIAO Changfa3
摘要:
纳米粒子催化剂具有优异的催化活性,但在使用时其易团聚且回收较为困难。鉴于此,以纳米纤维为载体,将纳米粒子催化剂负载于纳米纤维上制得纳米纤维基催化材料,从而有效解决了纳米粒子催化剂的回收难题。为更好了解纳米纤维基催化材料的制备及应用研究进展,综述了近年来纳米纤维基催化材料的制备方法和工艺流程,介绍了纳米纤维基催化材料在催化染料降解、有机物降解、重金属离子还原等领域的应用研究进展。最后指出:纳米纤维基催化材料具有催化活性高、催化剂易回收等优点,但仍存在力学性能差和制备效率低的缺点,尚无法满足大规模实际应用; 为满足实际应用,提高纳米纤维基催化材料力学性能,寻求批量化制备工艺,是未来研究的重点。
中图分类号:
[1] |
RODRIGUES T S, DA SILVA A G, CAMARGO P H. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities[J]. Journal of Materials Chemistry A, 2019, 7(11): 5857-5874.
doi: 10.1039/C9TA00074G |
[2] | 张婷婷, 许可欣, 金梦甜, 等. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(7): 175-183. |
ZHANG Tingting, XU Kexin, JIN Mengtian, et al. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and its application in water treatment[J]. Journal of Textile Research, 2021, 42(7): 175-183.
doi: 10.1177/004051757204200309 |
|
[3] |
HANSKE C, SANZ-ORTIZ M N, LIZ-MARZáN L M. Silica-coated plasmonic metal nanoparticles in action[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201707003.
doi: 10.1002/adma.201707003 |
[4] |
LIU S H, REGULACIO M D, TEE S Y, et al. Preparation, functionality, and application of metal oxide-coated noble metal nanoparticles[J]. The Chemical Record, 2016, 16(4): 1965-1990.
doi: 10.1002/tcr.201600028 pmid: 27291595 |
[5] |
LAI C, LIU X G, QIN L, et al. Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kana-mycin[J]. Microchimica Acta, 2017, 184(7): 2097-2105.
doi: 10.1007/s00604-017-2218-z |
[6] |
KAKAEI K, RAHNAVARDI M. Synthesis of nitrogen-doped reduced graphene oxide and its decoration with high efficiency palladium nanoparticles for direct ethanol fuel cell[J]. Renewable Energy, 2021, 163: 1277-1286.
doi: 10.1016/j.renene.2020.09.043 |
[7] |
MAO H, JI C G, LIU M H, et al. Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol[J]. Applied Surface Science, 2018, 434: 522-533.
doi: 10.1016/j.apsusc.2017.10.209 |
[8] |
BARAN T, NASROLLAHZADEH M. Facile synthesis of palladium nanoparticles immobilized on magnetic biodegradable microcapsules used as effective and recyclable catalyst in Suzuki-Miyaura reaction and p-nitrophenol reduction[J]. Carbohydrate Polymers, 2019. DOI: 10.1016/j.carbpol.2019.115029.
doi: 10.1016/j.carbpol.2019.115029 |
[9] |
WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chemical Reviews, 2020, 120(2): 1438-1511.
doi: 10.1021/acs.chemrev.9b00223 pmid: 31246430 |
[10] | LI S, CUI Z M, LI D M, et al. Hierarchically structured electrospinning nanofibers for catalysis and energy storage[J]. Composites Communications, 2019(13): 1-11. |
[11] | LI Z H, LIU S T, SONG S G, et al. Porous ceramic nanofibers as new catalysts toward heterogeneous reactions[J]. Composites Communications, 2019(15): 168-178. |
[12] | 周园园, 郑煜铭, 吴小琼, 等. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186. |
ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, et al. Research progress of performance enhancement methods for electrospun nanofiber-based photo-catalyst[J]. Journal of Textile Research, 2021, 42(11): 179-186. | |
[13] |
KHAN M Q, KHARAGHANI D, ULLAH S, et al. Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites[J]. Nanomaterials, 2018. DOI: 10.3390/nano8090644.
doi: 10.3390/nano8090644 |
[14] | 张梦媛, 黄庆林, 黄岩, 等. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(9): 1-7. |
ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photo-catalytic nanofiber membrane and its application[J]. Journal of Textile Research, 2019, 40(9): 1-7.
doi: 10.1177/004051757004000101 |
|
[15] | 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(5): 8-14. |
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance[J]. Journal of Textile Research, 2020, 41(5): 8-14. | |
[16] |
LI Y, ZHAO H J, YANG M J. TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange[J]. Journal of Colloid and Interface Science, 2017, 508: 500-507.
doi: 10.1016/j.jcis.2017.08.076 |
[17] |
GUO S J, BAI J, LIANG H O, et al. The controllable preparation of electrospun carbon fibers supported Pd nanoparticles catalyst and its application in Suzuki and Heck reactions[J]. Chinese Chemical Letters, 2016, 27(3): 459-463.
doi: 10.1016/j.cclet.2015.12.029 |
[18] |
WANG W, WANG K, HE J, et al. A synergistic strategy for nanoparticle/nanofiber composites towards p-nitrophenol catalytic hydrogenation[J]. Chemical Research in Chinese Universities, 2015, 31(6): 1012-1017.
doi: 10.1007/s40242-015-5155-6 |
[19] |
CHEN M X, WEI L Y, ZHANG W, et al. Fabrication and catalytic performance of a novel tubular PMIA/Ag@RGO nanocomposite nanofiber membrane[J]. RSC Advances, 2021, 11(36): 22287-22296.
doi: 10.1039/d1ra03707b pmid: 35480820 |
[20] |
LIU H J, LIU Y, WANG L M, et al. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation[J]. Carbon, 2021, 177: 199-206.
doi: 10.1016/j.carbon.2021.02.081 |
[21] |
ZHAO H, KANG W, MA X, et al. Fabrication and catalytic behavior of hierarchically-structured nylon 6 nanofiber membrane decorated with silver nano-particles[J]. Chinese Journal of Catalysis, 2017, 38(1): 73-82.
doi: 10.1016/S1872-2067(16)62545-7 |
[22] | 于丽娜, 王敏, 神领第, 等. 聚丙烯腈纳米纤维载银复合膜绿色制备及其催化性能[J]. 高分子学报, 2014(2): 239-247. |
YU Li'na, WANG Min, SHEN Lingdi, et al. Green fabrication and catalytic properties of Ag/APAN nanofibrous composite membranes[J]. Acta Polymerica Sinica, 2014 (2): 239-247. | |
[23] | CHENG P, LIU Y, YI Z B, et al. In situ prepared nanosized Pt-Ag/PDA/PVA-co-PE nanofibrous membrane for highly-efficient catalytic reduction of p-nitrophenol[J]. Composites Communications, 2018(9): 11-16. |
[24] |
HU D M, XIAO Y C, LIU H, et al. Loading of Au/Ag bimetallic nanoparticles within electrospun PVA/PEI nanofibers for catalytic applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552: 9-15.
doi: 10.1016/j.colsurfa.2018.05.013 |
[25] |
HE F G, DU B, SHARMA G, et al. Highly efficient polydopamine-coated poly(methyl methacrylate) nanofiber-supported platinum-nickel bimetallic catalyst for formaldehyde oxidation at room temperature[J]. Polymers, 2019. DOI: 10.3390/polym11040674.
doi: 10.3390/polym11040674 |
[26] | DING Q W, MIAO Y E, LIU T X. Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5617-5622. |
[27] |
MOUSAVI S, SHAHRAKI F, ALIABADI M, et al. Nanofiber immobilized CeO2/dendrimer nanoparticles: an efficient photocatalyst in the visible and the UV[J]. Applied Surface Science, 2019, 479: 608-618.
doi: 10.1016/j.apsusc.2019.02.119 |
[28] |
LI Z J, KANG W M, HAN Z B, et al. Hierarchical MnOx@PVDF/MWCNTs tree-like nanofiber membrane with high catalytic oxidation activity[J]. Journal of Alloys and Compounds, 2019, 780: 805-815.
doi: 10.1016/j.jallcom.2018.11.405 |
[29] |
SHI Y Z, YANG D Z, LI Y, et al. Fabrication of PAN@TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation[J]. Applied Surface Science, 2017, 426: 622-629.
doi: 10.1016/j.apsusc.2017.06.302 |
[30] |
CHOI J S, CHAN S, JOO H, et al. Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment[J]. Water Research, 2016, 101: 362-369.
doi: S0043-1354(16)30397-9 pmid: 27286471 |
[31] |
LUO Y M, JIA Y R, ZHANG D X, et al. Coaxial electrospinning method for the preparation of TiO2@CdS/PVA composite nanofiber mat and investigation on its photodegradation catalysis[J]. Photochemistry and Photobiology, 2016, 92(4): 515-522.
doi: 10.1111/php.12591 |
[32] |
HUANG G Y, CHANG W J, LU T W, et al. Electrospun CuS nanoparticles/chitosan nanofiber composites for visible and near-infrared light-driven catalytic degradation of antibiotic pollutants[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.134059.
doi: 10.1016/j.cej.2021.134059 |
[33] |
ZHANG X D, LIU X J, ZHANG L, et al. Novel porous Ag2S/ZnS composite nanospheres: fabrication and enhanced visible-light photocatalytic activities[J]. Journal of Alloys and Compounds, 2016, 655: 38-43.
doi: 10.1016/j.jallcom.2015.08.202 |
[34] | CHEN H F, YANG J, CHEN H Q, et al. Solar photocatalytic hydrogen energy production using PbS-ZnS heterojunction/electrospun fiber composites[J]. Energy Exploration & Exploitation, 2019, 37(5): 1477-1486. |
[35] |
SUN D K, SHI J W, MA D D, et al. CdS/ZnS/ZnO ternary heterostructure nanofibers fabricated by electrospinning for excellent photocatalytic hydrogen evolution without co-catalyst[J]. Chinese Journal of Catalysis, 2020, 41(9): 1421-1429.
doi: 10.1016/S1872-2067(20)63576-8 |
[36] |
WANG S J, LUO T, ZHU J, et al. A facile way to fabricate cellulose-Ag@AgCl composites with photo-catalytic properties[J]. Cellulose, 2016, 23(6): 3737-3745.
doi: 10.1007/s10570-016-1064-1 |
[37] |
YU D D, BAI J, LIANG H O, et al. AgI-modified TiO2 supported by PAN nanofibers: a heterostructured composite with enhanced visible-light catalytic activity in degrading MO[J]. Dyes and Pigments, 2016, 133: 51-59.
doi: 10.1016/j.dyepig.2016.05.036 |
[38] |
ZHANG M M, LIU M, JIANG Y, et al. Synthesis of immobilized CdS/TiO2 nanofiber heterostructure photocatalyst for efficient degradation of toluene[J]. Water, Air, & Soil Pollution, 2020. DOI: 10.1007/s11270-020-4461-x.
doi: 10.1007/s11270-020-4461-x |
[39] |
ZHOU Z D, PENG X W, ZHONG L X, et al. Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation[J]. Carbohydrate Polymers, 2016, 136: 322-328.
doi: 10.1016/j.carbpol.2015.09.009 pmid: 26572362 |
[40] |
YAR A, HASPULAT B, ÜSTÜN T, et al. Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity[J]. RSC Advances, 2017, 7(47): 29806-29814.
doi: 10.1039/C7RA03699J |
[41] | 高云莉, 王琛, 冯伟忠, 等. 负载不同形貌Cu2O/PAN纳米纤维膜光催化性能研究[J]. 现代纺织技术, 2021, 29(3): 1-7. |
GAO Yunli, WANG Chen, FENG Weizhong, et al. Study on photocatalytic performance of cuprous oxide/polyacrylonitrile nanofiber membranes with different morphologies[J]. Advanced Textile Technology, 2021, 29(3):1-7. | |
[42] |
LI Z Q, YUAN C G, GUO Q, et al. Preparation of stable AgNPs@PAN/GO-SH nanocompsite by electro-spinning for effective degradation of 4-nitrophenol, methylene blue and Rhodamine B[J]. Materials Letters, 2020. DOI: 10.1016/j.matlet.2020.127409.
doi: 10.1016/j.matlet.2020.127409 |
[43] |
HUANG X X, WANG R, JIAO T F, et al. Facile Preparation of hierarchical AgNP-loaded MXene/Fe3O4/polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment[J]. ACS Omega, 2019, 4(1): 1897-1906.
doi: 10.1021/acsomega.8b03615 |
[44] |
YIN J J, ZHAN F K, JIAO T F, et al. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment[J]. Chinese Chemical Letters, 2020, 31(4): 992-995.
doi: 10.1016/j.cclet.2019.08.047 |
[45] | MIAO L, LIU G J, WANG J D. Ag-nanoparticle-bearing poly(vinylidene fluoride) nanofiber mats as janus filters for catalysis and separation[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7397-7404. |
[46] |
GOPIRAMAN M, SARAVANAMOORTHY S, BASKAR R, et al. Green synthesis of Ag@Au bimetallic regenerated cellulose nanofibers for catalytic applications[J]. New Journal of Chemistry, 2019, 43(43): 17090-17103.
doi: 10.1039/C9NJ04428K |
[47] | ZHAO H M, XIA Q S, XING H Z, et al. Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr(VI) reduction and dye degradation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4449-4456. |
[48] |
MOHAMED A, EL-SAYED R, OSMAN T A, et al. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water[J]. Environmental Research, 2016, 145: 18-25.
doi: S0013-9351(15)30092-X pmid: 26615225 |
[49] |
MOHAMED A, OSMAN T A, TOPRAK M S, et al. Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424: 45-53.
doi: 10.1016/j.molcata.2016.08.010 |
[50] |
WANG L, ZHANG C B, GAO F, et al. Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light[J]. Chemical Engineering Journal, 2017, 314: 622-630.
doi: 10.1016/j.cej.2016.12.020 |
[51] |
WANG L, ZHANG C B, CHENG R, et al. Microcystis aeruginosa synergistically facilitate the photocatalytic degradation of tetracycline hydrochloride and Cr(VI) on PAN/TiO2/Ag nanofiber mats[J]. Catalysts, 2018. DOI: 10.3390/catal8120628.
doi: 10.3390/catal8120628 |
[52] |
YIN X, XIE X Y, SONG L X, et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells[J]. Journal of Materials Science, 2017, 52(18): 11025-11035.
doi: 10.1007/s10853-017-1287-z |
[53] |
YIN X, XIE X Y, SONG L X, et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode[J]. Applied Surface Science, 2018, 440: 992-1000.
doi: 10.1016/j.apsusc.2018.01.264 |
[54] |
XU F Y, LE Y, CHENG B, et al. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Applied Surface Science, 2017, 426: 333-341.
doi: 10.1016/j.apsusc.2017.07.096 |
[55] |
WANG Q, WANG W, YAN B Y, et al. Well-dispersed Pd-Cu bimetals in TiO2 nanofiber matrix with enhanced activity and selectivity for nitrate catalytic reduction[J]. Chemical Engineering Journal, 2017, 326: 182-191.
doi: 10.1016/j.cej.2017.05.110 |
[56] |
ZHANG B B, YE Z Y, QIN M, et al. Palladium complex embedded crosslinked polystyrene nanofibers as a green and efficient heterogeneous catalyst for coupling reactions[J]. Journal of Applied Polymer Science, 2021. DOI: 10.1002/app.49666.
doi: 10.1002/app.49666 |
[57] |
DENG H Z, XU F Y, CHENG B, et al. Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst[J]. Nanoscale, 2020, 12(13): 7206-7213.
doi: 10.1039/C9NR10451H |
[58] | QU T, HU J X, DAI X, et al. Electrospinning highly dispersed Ru nanoparticle-embedded carbon nanofibers boost CO2 reduction in a H2/CO2 fuel cell[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23523-23531. |
[59] |
KANG S, HWANG J. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.122315.
doi: 10.1016/j.cej.2019.122315 |
[60] |
HAN W G, DONG F, HAN W L, et al. Mn-polyacrylonitrile nanofibers decorated with co-metal-organic frameworks as precursors of CoMnOx catalysts for the combustion of toluene[J]. ACS Applied Nano Materials, 2020, 3(8): 7818-7828.
doi: 10.1021/acsanm.0c01308 |
[61] |
ZHANG Z Y, WU X, KOU Z K, et al. Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: a review[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.131133.
doi: 10.1016/j.cej.2021.131133 |
[62] |
CHEN M X, XIAO C F, WANG C, et al. Fabrication of tubular braid reinforced PMIA nanofiber membrane with mussel-inspired Ag nanoparticles and its superior performance for the reduction of 4-nitrophenol[J]. Nanoscale, 2018, 10(42): 19835-19845.
doi: 10.1039/c8nr06398b pmid: 30334561 |
[63] |
WANG X Y, XIAO C F, LIU H L, et al. Robust functionalization of underwater superoleophobic PVDF-HFP tubular nanofiber membranes and applications for continuous dye degradation and oil/water separation[J]. Journal of Membrane Science, 2020. DOI: 10.1016/j.memsci.2019.117583.
doi: 10.1016/j.memsci.2019.117583 |
[1] | 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63. |
[2] | 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78. |
[3] | 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92. |
[4] | 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8. |
[5] | 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21. |
[6] | 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202. |
[7] | 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211. |
[8] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[9] | 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111. |
[10] | 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118. |
[11] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[12] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
[13] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[14] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[15] | 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131. |
|