纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 228-237.doi: 10.13475/j.fzxb.20210702510
ZHU Xiaorong1, HE Jiazhen1,2(), XIANG Youhui1, WANG Min2
摘要:
为全面评价热防护服在热暴露阶段的蓄热防护作用以及在冷却阶段因蓄热释放对人体造成的热危害效应,介绍了防护服热蓄积产生的原因,阐述了现阶段防护服热蓄积的测试方法以及数值模拟研究现状;从服装因素、环境因素以及人体因素3个方面归纳了防护服在热暴露阶段蓄热特性的影响因素;并总结了织物基本物理性能、空气层配置、织物水分、织物受压等因素对冷却阶段防护织物放热危害特性的影响。最后提出:在未来的研究中应针对多元化的热灾害环境以及冷却环境开展热防护服蓄放热双重特性的基础研究,并基于热防护服蓄放热双重效应探究其最优的配伍设计。
中图分类号:
[1] | MANDAL S, SONG G, ROSSI R. Thermal protective clothing for firefighters[M]. Cambridge: Woodhead Publishing, 2017:27-55. |
[2] |
LI J, LU Y H, LI X. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12):1235-1243.
doi: 10.1177/0040517512436830 |
[3] | WANG Y Y, LU Y H, LI J, et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance[J]. Fibers & Polymers, 2012, 13(5): 647-652. |
[4] | LAWSON J R. Firefighters' protective clothing and thermal environments of structural firefighting[J]. Performance of Protective Clothing, 1997, 1273(6):335-352. |
[5] |
HOSCHKE B N. Standard and specifications for firefighters' clothing[J]. Fire Safety Journal, 1981, 4(2): 125-137.
doi: 10.1016/0379-7112(81)90011-4 |
[6] |
TORVI D A, THRELFALL T G. Heat transfer model of flame resistant fabrics during cooling after exposure to fire[J]. Fire Technology, 2006, 42(1): 27-48.
doi: 10.1007/s10694-005-3733-8 |
[7] |
HE J Z, CHEN Y, WANG L C, et al. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure[J]. Textile Research Journal, 2018, 88(24):2867-2879.
doi: 10.1177/0040517517732084 |
[8] |
SONG G, WEI C, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943 |
[9] | KAHN S A, PATEL J H, LENTZ C W, et al. Firefighter burn injuries: predictable patterns influenced by turnout gear[J]. Journal of Burn Care & Research, 2012, 33(1): 152-156. |
[10] |
TECHNOLOGY F. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
doi: 10.1023/A:1015484426361 |
[11] | 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(6): 171-176. |
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016, 37(6): 171-176. | |
[12] |
SONG G, BARKER R L, HAMOUDA H, et al. Modeling the thermal protective performance of heat resistant garments in flash fire exposures[J]. Textile Research Journal, 2004, 74(12): 1033-1040.
doi: 10.1177/004051750407401201 |
[13] |
BARKER R L, DEATON A S, ROSS K A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011, 47(3): 549-563.
doi: 10.1007/s10694-010-0151-3 |
[14] | 翟丽娜, 李俊. 服装热防护性能测评技术的发展过程及现状[J]. 纺织学报, 2015, 36(7): 162-168. |
ZHAI Li'na, LI Jun. Development and current status on performance test and evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015, 36(7): 162-168. | |
[15] | 何佳臻, 薛萧昱, 王敏, 等. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(6): 112-117. |
HE Jiazhen, XUE Xiaoyu, WANG Min, et al. Predicting thermal protective performance of clothing based on maximum attenuation factor model[J]. Journal of Textile Research, 2020, 41(6): 112-117. | |
[16] |
HE J Z, WANG M, LI J. Determination of the thermal protective performance of clothing during bench-scale fire test and flame engulfment test: evidence from a new index[J]. Journal of Fire Sciences, 2015, 33(3): 218-231.
doi: 10.1177/0734904115581620 |
[17] |
ZHU F L, ZHANG W Y. Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux[J]. Journal of Fire Sciences, 2009, 27(1): 81-96.
doi: 10.1177/0734904108094960 |
[18] |
SAWCYN C, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7): 632-644.
doi: 10.1177/0040517508093415 |
[19] | CHITRPHIROMSRI P, KUZNETSOV A V. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure[J]. Heat and Mass Transfer, 2005, 41(3): 206-215. |
[20] |
ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006, 24(6): 465-485.
doi: 10.1177/0734904106062355 |
[21] |
SONG G, CHITRPHIROMSRI P, DING D. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1): 89-106.
pmid: 18394330 |
[22] | AMP A G, BERGSTROMA D J. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer, 2010, 58(9): 702-724. |
[23] | GHAZY A, BERGSTROM D J. Influence of the air gap between protective clothing and skin on clothing performance during flash fire exposure[J]. Heat & Mass Transfer, 2011, 47(10): 1275-1288. |
[24] | GHAZY A, BERGSTROM D J. Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure[J]. Heat & Mass Transfer, 2013, 49(6): 775-788. |
[25] |
ONOFREI E, PETRUSIC S, BEDEK G, et al. Study of heat transfer through multilayer protective clothing at low-level thermal radiation[J]. Journal of Industrial Textiles, 2014, 45(2): 222-238.
doi: 10.1177/1528083714529805 |
[26] |
FU M, YUAN M Q, WENG W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation[J]. International Journal of Thermal Sciences, 2015, 96:201-210.
doi: 10.1016/j.ijthermalsci.2015.05.008 |
[27] |
SU Y, HE J, LI J. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016, 93:1295-1303.
doi: 10.1016/j.applthermaleng.2015.10.089 |
[28] |
SU Y, HE J, LI J. An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation[J]. Textile Research Journal, 2016, 87(16): 1953-1967.
doi: 10.1177/0040517516660892 |
[29] |
SU Y, HE J, LI J. A model of heat transfer in firefighting protective clothing during compression after radiant heat exposure[J]. Journal of Industrial Textiles, 2016, 47(8): 2128-2152.
doi: 10.1177/1528083716644289 |
[30] |
SU Y, RUI L, SONG G, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat and Mass Transfer, 2018, 120(5): 818-829.
doi: 10.1016/j.ijheatmasstransfer.2017.12.074 |
[31] |
GUOWEN S, PASKALUK S, SATI R, et all. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2010, 81(3): 311-323.
doi: 10.1177/0040517510380108 |
[32] |
GHAZY A. The thermal protective performance of firefighters' clothing: the air gap between the clothing and the body[J]. Heat Transfer Engineering, 2017, 38(9-12): 975-986.
doi: 10.1080/01457632.2016.1212583 |
[33] | AHMED G. Influence of thermal shrinkage on protective clothing performance during fire exposure: numerical investigation[J]. Mechanical Engineering Research, 2014, 4(2):1-15. |
[34] |
LAPKA P, FURMA ŃSKI P, WISNIEWSKI T S.Numerical modelling of transient heat and moisture transport in protective clothing [J]. Journal of Physics Conference, 2016. DOI: 10.1088/1742-6596/676/1/012014.
doi: 10.1088/1742-6596/676/1/012014 |
[35] | 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010, 31(12): 103-107. |
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010, 31(12): 103-107. | |
[36] | 赖军, 张梦莹, 张华, 等. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(6): 151-156. |
LAI Jun, ZHANG Mengying, ZHANG Hua, et al. Research progress on air gap entrapped in firefighters'protective clothing and its measurement methods[J]. Journal of Textile Research, 2017, 38(6): 151-156. | |
[37] |
FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9): 968-978.
doi: 10.1177/0040517513512403 |
[38] | ENI E U. Developing test procedures for measuring stored thermal energy in firefighter protective clothing[D]. North Carolina: North Carolina State University, 2005:1-53. |
[39] | 何华玲, 于志财, 张健飞, 等. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(8): 108-113. |
HE Hualing, YU Zhicai, ZHANG Jianfei, et al. Influence of moisture content on heat storage performance of multilayer fabric assemblies for firefighters[J]. Journal of Textile Research, 2017, 38(8): 108-113. | |
[40] |
MANDAL S, SONG G, ACKERMAN M, et al. Characterization of textile fabrics under various thermal exposures[J]. Textile Research Journal, 2013, 83(10): 1005-1019.
doi: 10.1177/0040517512461707 |
[41] | 华涛. 热防护服热防护性能的分析与探讨[J]. 产业用纺织品, 2002, 20(8): 28-31. |
HUA Tao. Analysis of thermal protective performance of thermal protective clothing[J]. Technical Textiles, 2002, 20(8): 28-31. | |
[42] |
HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016, 86(3): 235-244.
doi: 10.1177/0040517515588272 |
[43] | BARKER R L, GUERTH C, BEHNKE W P, et al. Measuring the thermal energy stored in firefighter protective clothing[J]. ASTM Special Technical Publication, 2000, 1386:33-44. |
[44] |
SU Y, HE J, LI J. Numerical simulation of heat transfer in protective clothing with various heat exposure distances[J]. Journal of The Textile Institute, 2017, 108(8):1412-1420.
doi: 10.1080/00405000.2016.1254591 |
[45] |
HE J Z, LU Y H, CHEN Y, et al. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge[J]. Journal of Hazardous Materials, 2017, 338: 76-84.
doi: S0304-3894(17)30355-2 pmid: 28531661 |
[46] | HE J, LU Y, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science & Engineering, 2019, 7(6): 2585-2595. |
[47] |
HE J Z, LU Y H, CHEN S, et al. On dual performance of protective clothing composites with different air gaps under hot steam exposure[J]. Case Studies in Thermal Engineering, 2021. DOI: 10.1016/j.csite.2021.101128.
doi: 10.1016/j.csite.2021.101128 |
[48] |
SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020. DOI: 10.1016/j.opplther maleng.2020.115340.
doi: 10.1016/j.opplther maleng.2020.115340 |
[49] | BARKER R L. A review of gaps and limitations in test methods for first responder protective clothing and equipment[R]. North Carolina: National Personal Protection Technology Laboratory, 2005:8-13. |
[50] |
SHALEV I, BARKER R L. Protective fabrics: a comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures[J]. Textile Research Journal, 1984, 54(10): 648-654.
doi: 10.1177/004051758405401003 |
[51] |
HE J, LI J. Quantitatively assessing the effect of exposure time and cooling time of fabric assemblies representative of those used in firefighter clothing on the thermal protection[J]. Fire and Materials, 2016, 40(6): 773-784.
doi: 10.1002/fam.2341 |
[52] | 邓梦, 王云仪, 田苗. 消防服的老化降解及安全使用寿命预测[J]. 上海纺织科技, 2019, 19(10): 21-27. |
DENG Meng, WANG Yunyi, TIAN Miao. Research of aging and degradation of the firefighters' protective clothing and lifetime prediction[J]. Shanghai Textile Science & Technology, 2019, 19(10): 21-27. | |
[53] | JASON A, STEVEN C, DEAN C, et al. Thermal capacity of fire fighter protective clothing[R]. Quincy: Fire Protection Research Foundation, 2008:1-33. |
[54] | 王莹. 多次闪火作用下织物及服装的热收缩与热防护性能研究[D]. 上海: 东华大学, 2016:14-28. |
WANG Ying. Research on thermal shrinkage and thermal protective performance of fabric and clothing after repeated flash fire exposure[D]. Shanghai: Donghua University, 2016:14-28. | |
[55] |
WANG M, LI J. Thermal protection retention of fire protective clothing after repeated flash fire exposure[J]. Journal of Industrial Textiles, 2016, 46(3): 737-755.
doi: 10.1177/1528083715594977 |
[56] |
LI J, LI X H, LU Y H, et al. A new approach to characterize the effect of fabric deformation on thermal protective performance[J]. Measurement Science and Technology, 2012. DOI: 10.1088/0957-0233/23/4/045601.
doi: 10.1088/0957-0233/23/4/045601 |
[57] | 卢业虎, 戴晓群. 基于双向拉伸法的织物泊松比测定[J]. 纺织学报, 2009, 30(9): 25-28. |
LU Yehu, DAI Xiaoqun. Calculation of fabrics Poisson ratio based on biaxial extension[J]. Journal of Textile Research, 2009, 30(9): 25-28. | |
[58] | NAZARÉ S, MADRZYKOWSKI D, NAZARE S. A review of test methods for determining protective capabilities of fire fighter protective clothing from steam[M]. Gaithersburg: National Institute of Standards and Technology, 2015:1-28. |
[59] |
BARKER R L. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006, 76(1): 27-31.
doi: 10.1177/0040517506053947 |
[60] | 李娜, 邓梦, 王云仪. 防火服用织物的蓄热机理及其作用机制研究进展[J]. 纺织导报, 2020, 39(11): 71-75. |
LI Na, DENG Meng, WANG Yunyi. Research progress on heat-storing property and related impact mechanism of flame-retardant fabrics[J]. China Textile Leader, 2020, 39(11): 71-75. | |
[61] | SU Y, LI J, SONG G. The effect of moisture content within multilayer protective clothing on protection from radiation and steam[J]. International Journal of Occupational Safety & Ergonomics, 2018, 24(2): 190-199. |
[62] |
SONG G, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943 |
[1] | 郭静, 周倩雯, 何佳臻. 形变状态下热防护织物的蓄放热双重特性[J]. 纺织学报, 2022, 43(07): 67-74. |
[2] | 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202. |
[3] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[4] | 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196. |
[5] | 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117. |
[6] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144. |
[7] | 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113. |
[8] | 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019, 40(10): 141-146. |
[9] | 张泓月, 李小辉. 热防护服用织物蜂窝夹芯结构的辐射热性能测评[J]. 纺织学报, 2019, 40(10): 147-151. |
[10] | 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152. |
[11] | 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118. |
[12] | 何华玲 于志财 张健飞 宋国文. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(08): 108-113. |
[13] | 张梦莹 苗勇 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(06): 171-176. |
[14] | 苗勇 李俊. 减少热蓄积的消防服开发及其性能评价[J]. 纺织学报, 2016, 37(01): 111-115. |
[15] | 黄冬梅 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报, 2015, 36(10): 113-119. |
|