纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 1-10.doi: 10.13475/j.fzxb.20220809410

• 纤维材料 •    下一篇

磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能

任嘉玮1, 张圣明1, 吉鹏2(), 王朝生1, 王华平1   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2022-08-18 修回日期:2022-11-11 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 吉鹏(1988—),男,副研究员,博士。主要研究方向为功能聚酯、聚酰胺结构设计与制备。E-mail:jipeng@dhu.edu.cn。
  • 作者简介:任嘉玮(1997—),男,博士生。主要研究方向为阻燃聚酯纤维及织物。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232022D-10)

Preparation and properties of phosphorus-silicon modified flame retardant and anti-dripping polyester fiber

REN Jiawei1, ZHANG Shengming1, JI Peng2(), WANG Chaosheng1, WANG Huaping1   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-08-18 Revised:2022-11-11 Published:2023-02-15 Online:2023-03-07

摘要:

针对聚酯 (PET)纤维易燃且燃烧时伴随着大量熔滴与烟气的问题,将二乙基次膦酸盐阻燃剂、大分子型有机硅与PET载体共混制备磷硅阻燃母粒。将磷硅阻燃母粒按照一定质量分数添加到常规PET切片中混合,经熔融纺丝制得阻燃抑熔滴PET纤维。借助扫描电子显微镜、复丝强度仪、差示扫描量热仪、热重分析仪、氧指数测试仪、拉曼光谱仪对阻燃PET的力学性能、热性能与阻燃性能等进行表征和分析。结果表明:二乙基次膦酸盐阻燃剂使PET表面脱水成炭,大分子型有机硅提升了炭层的石墨化程度,形成有序稳定的炭层,增强了阻燃PET纤维阻燃性能并抑制熔滴形成,且燃烧形成的烟气量下降;添加质量分数为3%的二乙基次膦酸盐阻燃剂与0.77%大分子型有机硅纺制的阻燃PET纤维,其极限氧指数达到31%以上,垂直燃烧测试等级达到 V-0 级;通过磷硅元素间的阻燃协效作用改善了阻燃PET纤维的可纺性,同时使其具有良好的阻燃与抑熔滴性能。

关键词: 聚酯纤维, 阻燃, 抑熔滴, 磷硅协同阻燃, 阻燃机制, 可纺性, 二乙基次膦酸盐, 大分子型有机硅

Abstract:

Objective Polyester fibers are flammable with a large number of molten droplets and smoke emission when burning. This research aims to improve the flame retardant properties of polyester fibers through the addition of phosphorus and silicon flame retardants, and to prepare polyester fibers with better flame retardant properties for fire safety in end uses.
Method The phosphorus-silicon flame retardant masterbatch was prepared by blending diethyl hypophosphite flame retardant, macromolecular silicone and polyester. Then, the phosphorus-silicon flame retardant masterbatch was added to the polyester according to an optimized mass fraction, and the flame retardant and anti-dripping polyester fiber was produced by melt spinning. The mechanical properties, thermal properties and flame retardant properties of the flame retardant polyester were characterized and analyzed by using scanning electron microscope, compound filament strength meter, differential scanning calorimeter, thermogravimetric analyzer, ultimate oxygen index meter and Raman spectroscopy.
Results The diethyl hypophosphite flame retardant selected in this work is found to be able to dehydrate the polyester surface into char, and the macromolecular silicone enhances the graphitization of the char layer, forms an orderly and stable char layer, enhances the flame retardant polyester flame retardant properties and inhibits the formation of molten droplets. Accordingly, the amount of smoke formed by combustion decreases, and the morphology of the char layer of the samples after combustion is shown in Fig. 5, and the results of the char layer structure stability study were shown in Fig. 6. It is discovered that macromolecular silicone mainly plays a role in the cohesive phase flame retardant process when polyester burns, forming a synergistic effect with phosphorus-containing flame retardant, generating an effective physical barrier, impeding the transfer of combustible gases, oxygen and heat, and inhibiting the occurrence of combustion reactions. The flame retardant polyester fiber spun by adding 3% diethyl hypophosphite flame retardant and 0.77% macromolecular silicone, the test results for the flame retardant properties of the modified samples are showed that the limiting oxygen index reached more than 31%, the vertical combustion test grade reached V-0 level, inhibiting the formation of molten droplets of polyester fiber during combustion, hence reducing the risk of secondary combustion brought about by the molten droplet phenome-non(Tab. 7).
Conclusion The flame retardant synergistic effect between phosphorus and silicon elements improved the spinnability of the flame retardant polyester fiber, and the modified polyester fiber has good flame retardant and anti-dripping properties. This work proved that the phosphorus-silicon element synergy is helpful to improve the flame retardant properties of polyester fibers, and provides ideas for the subsequent preparation of flame retardant polyester fibers by using different structural flame retardants from the viewpoint of conformational relationship and processing performance.

Key words: polyester fiber, flame retardant, anti-dripping, phosphorus-silicon synergy, flame retardant mechanism, spinnability, diethyl hypophosphite, macromolecular silicone

中图分类号: 

  • TQ342.21

表1

FR1、FR2阻燃母粒物料配方"

样品编号 二乙基次膦酸盐 大分子型有机硅 PET
FR1 20.0 0.0 80.0
FR2 17.4 4.5 78.1

表2

阻燃PET共混物物料配方"

样品
编号
配方 磷元素质
量分数
FR1阻燃
母粒
FR2阻燃
母粒
PET
PET 0 0 100.00 0.0
FR1-1 5 0 95.00 0.2
FR1-2 10 0 90.00 0.4
FR1-3 15 0 85.00 0.6
FR2-1 0 5.75 94.25 0.2
FR2-2 0 11.50 88.50 0.4
FR2-3 0 17.25 82.75 0.6

表3

熔融纺丝各区间温度"

样品编号 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 机头
PET 280 288 293 295 295
FR1-1 280 288 293 296 295
FR1-2 280 290 295 296 296
FR1-3 280 290 295 296 298
FR2-1 280 288 293 293 295
FR2-2 280 288 293 293 290
FR2-3 280 288 293 293 288

图1

阻燃PET纤维的截面和表面SEM照片"

图2

FR1/PET和FR2/PET共混物的DSC曲线"

表4

不同组分阻燃改性PET共混物的热性能参数"

样品编号 玻璃化转变温度 熔点 结晶温度
PET 81.59 253.79 180.30
FR1-1 80.69 254.44 203.96
FR1-2 79.65 254.38 203.37
FR1-3 80.95 253.61 201.33
FR2-1 79.61 252.69 221.78
FR2-2 80.12 253.77 210.13
FR2-3 78.54 253.51 207.62

表5

不同牵伸倍率下阻燃改性PET纤维的断裂强度、断裂伸长率及其CV值"

样品
编号
断裂强度/(cN·dtex-1) 断裂强度CV值/% 断裂伸长率/% 断裂伸长率CV值/%
5.5倍 6.0倍 6.5倍 5.5倍 6.0倍 6.5倍 5.5倍 6.0倍 6.5倍 5.5倍 6.0倍 6.5倍
PET 2.00 2.10 2.15 6.30 7.50 5.10 54.20 60.50 62.90 11.60 13.20 13.30
FR1-1 1.28 1.46 1.58 11.30 6.06 7.25 49.40 65.50 45.40 16.40 16.90 15.22
FR1-2 1.77 2.06 2.28 1.00 2.70 5.90 57.10 25.60 25.20 17.50 13.70 15.30
FR1-3 1.61 1.96 2.13 5.81 3.40 2.50 38.40 38.80 28.50 14.10 12.90 8.80
FR2-1 1.20 1.27 1.50 8.90 9.70 1.00 50.70 57.50 45.00 24.80 27.70 7.10
FR2-2 1.24 1.43 1.67 4.30 3.40 4.30 64.00 55.30 40.30 17.30 11.50 8.20
FR2-3 1.25 1.49 1.63 6.10 4.90 5.40 60.70 59.50 31.60 8.50 8.50 7.80

表6

不同组分阻燃改性PET共混物氮气氛围的TG数据"

样品编号 初始分解
温度/℃
最大质量
损失温度/℃
700 ℃时
残炭量/%
PET 399.9 437.1 10.88
FR1-1 390.4 434.8 12.59
FR1-2 392.8 437.7 14.05
FR1-3 393.0 434.9 14.25
FR2-1 397.1 432.3 14.68
FR2-2 397.6 434.3 15.34
FR2-3 394.9 432.4 15.10

图3

FR1/PET和FR2/PET共混物在氮气氛围下的热重曲线"

图4

不同组分阻燃改性PET共混物垂直燃烧测试结果"

表7

不同组分阻燃改性PET共混物垂直燃烧与极限氧指数测试结果"

样品编号 LOI值/% 垂直燃烧测试结果
是否引燃
脱脂棉
熔滴数 UL-94 等级
PET 21.0 1 V-2
FR1-1 26.8 1 V-2
FR1-2 27.8 1 V-2
FR1-3 29.4 1 V-0
FR2-1 27.4 1 V-2
FR2-2 28.4 1 V-2
FR2-3 31.4 1 V-0

图5

不同组分阻燃改性PET共混物燃烧后炭层表面的扫描电镜照片(×100)"

图6

不同组分阻燃改性PET共混物燃烧后炭层拉曼光谱图"

[1] 王鸣义. 高品质阻燃聚酯纤维及其织物的技术进展和趋势[J]. 纺织导报, 2018(2): 13-22.
WANG Mingyi. Technological development of high-quality flame-retardant polyester fiber and its fabric[J]. China Textile Leader, 2018 (2): 13-22.
[2] 胡昕雨, 张晓红. 阻燃抗熔滴聚酯纤维和尼龙纤维的研究进展[J]. 化学工程与装备, 2018(7): 252-254.
HU Xinyu, ZHANG Xiaohong. Advances in the research of flame retardant anti-drip polyester and nylon fibers[J]. Chemical Engineering & Equipment, 2018(7): 252-254.
[3] 赵星, 郭红彦. 阻燃聚酯纤维的制备及性能研究[J]. 印染助剂, 2018, 35(4): 31-34.
ZHAO Xing, GUO Hongyan. Preparation and properties of flame retardant polyester fiber[J]. Textiles Auxiliaries, 2018, 35(4): 31-34.
[4] 许虹, 计红梅, 张振雄, 等. 聚酯纤维阻燃改性进展[J]. 合成技术及应用, 2016, 31(3): 21-24.
XU Hong, JI Hongmei, ZHANG Zhenxiong, et al. Progress in flame retardant modification of polyester fiber[J]. Synthesis Technology & Application, 2016, 31(3): 21-24.
[5] 王启森, 朱志国, 王锐, 等. 抗熔滴阻燃聚酯的性能研究[J]. 合成纤维工业, 2014, 37(2): 44-47.
WANG Qisen, ZHU Zhiguo, WANG Rui, et al. Properties of anti-dripping flame retardant PET[J]. China Synthetic Fiber Industry, 2014, 37(2): 44-47.
[6] 孙晓霞. 阻燃纤维:一丝一缕织就安全屏障:访北京服装学院材料科学与工程学院院长王锐[J]. 新材料产业, 2019(7): 6-9.
SUN Xiaoxia. Flame retardant fibers:fibers that weave a safety barrier:interview with Wang Rui, Dean, College of Materials Science and Engineering, Beijing Institute of Fashion Technology[J]. Advanced Materials Industry, 2019(7): 6-9.
[7] 靳昕怡, 王颖, 朱志国, 等. 复合抑熔滴剂对阻燃聚酯共混物燃烧性能的影响[J]. 纺织学报, 2018, 39(8): 15-21.
JIN Xinyi, WANG Ying, ZHU Zhiguo, et al. Effect of combined anti-dripping additive on properties of flame resistant polyester[J]. Journal of Textile Research, 2018, 39(8): 15-21.
doi: 10.1177/004051756903900103
[8] ABBASI A, SHAKERI A, ABBASI A. Synthesize and characterization of flame retardant copolyesters PET/phosphorus compound[J]. Journal of Vinyl and Additive Technology, 2019, 25(3): 262-270.
doi: 10.1002/vnl.v25.3
[9] QIANG Hu, WANG Wenqing, MA Tianyi, et al. Anti-UV and hydrophobic dual-functional coating fabrication for flame retardant polyester fabrics by surface-initiated PET RAFT technique[J]. European Polymer Journal, 2022. DOI: 10.1016/j.eurpolymj.2022.111275.
doi: 10.1016/j.eurpolymj.2022.111275
[10] YE Tao, LIU Chang, LI Ping, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Prog Org Coat, 2021. DOI: 10.1016/j.porgcoat.2020.105971.
doi: 10.1016/j.porgcoat.2020.105971
[11] SALMEIA K A, GAAN S, MALUCELLI G, et al. Recent advances for flame retardancy of textiles based on phosphorus chemistry[J]. Polymers, 2016. DOI: 10.3390/polym8090319.
doi: 10.3390/polym8090319
[12] 胡优贤, 江振林, 金亮, 等. 含磷阻燃PET母粒的制备及阻燃PET性能研究[J]. 合成纤维工业, 2019, 42(6): 11-15.
HU Youxian, JIANG Zhenlin, JIN Liang, et al. Preparation of phosphorus-containing flame-retardant polyester masterbatch and properties of flame retardant polyester[J]. China Synthetic Fiber Industry, 2019, 42(6): 11-15.
[13] 黄基锐, 沙建昂, 龚静华, 等. 高磷含量阻燃聚酯及其与聚对苯二甲酸乙二醇酯共混物的制备研究[J]. 化工新型材料, 2017, 45(12): 122-125.
HUANG Jirui, SHA Jianang, GONG Jinghua, et al. Preparation of flame retardant polyester with high phosphorus content and its blend with PET[J]. New Chemical Materials, 2017, 45(12): 122-125.
[14] 俞雨农, 蒲新明, 郑兵, 等. 磷系阻燃聚酯的制备及其性能[J]. 浙江理工大学学报(自然科学版), 2021, 45(2): 205-211.
YU Yunong, PU Xinming, ZHENG Bing, et al. Preparation and properties of phosphorus flame retardant polyester[J]. Journal of Zhejiang Sci-Tech Univer-sity(Natural Science Edition), 2021, 45(2): 205-211.
[15] 江涌, 刘敏, 董林, 等. 阻燃抗熔滴聚酯树脂及纤维的制备与性能研究[J]. 纺织科技进展, 2019(10): 9-11.
JIANG Yong, LIU Min, DONG Lin, et al. Preparation and performance of flame retardant anti-dripping polyester resin and fiber[J]. Progress in Textile Science & Technology, 2019(10): 9-11.
[16] 黄璐, 王朝生, 王春雨, 等. 含磷硅阻燃PET的制备及其结构与性能研究[J]. 合成纤维工业, 2016, 39(2): 39-43.
HUANG Lu, WANG Chaosheng, WANG Chunyu, et al. Preparation and structural properties of flame retardant PET containing phosphorus and silicon[J]. China Synthetic Fiber Industry, 2016, 39(2): 39-43.
[17] 靳昕怡, 朱志国, 王颖, 等. 耐熔滴性阻燃聚酯的制备及性能研究[J]. 化工新型材料, 2019, 47(1): 144-147.
JIN Xinyi, ZHU Zhiguo, WANG Ying, et al. Study on preparation and property of flame retardant PET with dripping resistance[J]. New Chemical Materials, 2019, 47(1): 144-147.
[18] XUE Baoxia, SONG Yinghao, PENG Yun, et al. Enhancing the flame retardant of polyethylene terephthalate (PET) fiber via incorporation of multi-walled carbon nanotubes based phosphorylated chitosan[J]. Journal of The Textile Institute, 2018, 109(7): 871-878.
doi: 10.1080/00405000.2017.1380873
[19] XUE Baoxia, PENG Yun, SONG Yinghao, et al. Functionalized multiwalled carbon nanotubes by loading phosphorylated chitosan : preparation, characterization, and flame-retardant applications of polyethylene terephthalate[J]. High Performance Polymers, 2018, 30(9): 1036-1047.
doi: 10.1177/0954008317736375
[20] ZHU Keyu, JIANG Zhenlin, XU Xiaotong, et al. Preparation and thermal cross-linking mechanism of co-polyester fiber with flame retardancy and anti-dripping by in situ polymerization[J]. RSC Advances, 2021, 12(1): 168-180.
doi: 10.1039/d1ra07410e pmid: 35424466
[21] EZEH E M, ONUKWULI O D, ODERA R S. Novel flame-retarded polyester composites using cow horn ash particles[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5-8): 1701-1707.
doi: 10.1007/s00170-019-03678-2
[22] PENG Yun, NIU Mei, QIN Ruihong, et al. Study on flame retardancy and smoke suppression of PET by the synergy between Fe2O3 and new phosphorus-containing silicone flame retardant[J]. High Performance Polymers, 2020, 32(8): 871-882.
doi: 10.1177/0954008320914365
[23] XUE Baoxia, PENG Yun, QIN Ruihong, et al. Enhancing the flame retardancy and smoke suppression of PET fiber by introducing a new phosphorus-containing organosilicon and iron oxide[J]. The Journal of The Textile Institute, 2022, 113(4): 681-688.
doi: 10.1080/00405000.2021.1899651
[24] DIDANE N, GIRAUD S, DEVAUX E, et al. A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy[J]. Polymer Degradation and Stability, 2012, 97(3): 383-391.
doi: 10.1016/j.polymdegradstab.2011.12.004
[25] ZHU Shengjie, GONG Weiguang, LUO Ji, et al. Flame retardancy and mechanism of novel phosphorus-silicon flame retardant based on polysilsesquioxane[J]. Polymers, 2019. DOI: 10.3390/polym11081304.
doi: 10.3390/polym11081304
[26] GAWŁOWSKI A, FABIA J, GRACZYK T, et al. Study of PET fibres modified with phosphorus-silicon retar-dants[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(3): 1327-1334.
doi: 10.1007/s10973-016-5498-3
[27] LI Jiawei, PAN Feng, XU Hong, et al. The flame-retardancy and anti-dripping properties of novel poly(ethylene terephalate)/cyclotriphosphazene/silicone composites[J]. Polymer Degradation and Stability, 2014, 110: 268-277.
doi: 10.1016/j.polymdegradstab.2014.08.027
[1] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[2] 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68.
[3] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 222-229.
[4] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[5] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[6] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
[7] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[8] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[9] 熊永辉, 王冬, 杜长森, 付少海. 二硫代焦磷酸酯水性分散体系的制备及其在阻燃粘胶纤维中的应用[J]. 纺织学报, 2022, 43(07): 22-28.
[10] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[11] 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103.
[12] 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(06): 107-114.
[13] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[14] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[15] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[4] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[5] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[6] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[7] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[8] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .
[9] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58 -60 .
[10] 储咏梅;王琪;王国和. 竹浆纤维纯纺及混纺纱线弹性测试与分析[J]. 纺织学报, 2006, 27(2): 68 -70 .