纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 111-117.doi: 10.13475/j.fzxb.20220808907

• 纺织工程 • 上一篇    下一篇

玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能

蔡洁, 王亮, 傅宏俊(), 钟智丽   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2022-08-18 修回日期:2022-11-07 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 傅宏俊(1975—),男,副教授,博士。主要研究方向为高性能纤维复合材料、产业用纺织品。E-mail: fuhongjun@tiangong.edu.cn。
  • 作者简介:蔡洁(1992—),女,博士生。主要研究方向为碳纤维复合材料结构设计及其电磁屏蔽性能。

Electromagnetic interference shielding properties of composites reinforced with glass fiber/carbon fiber fabrics

CAI Jie, WANG Liang, FU Hongjun(), ZHONG Zhili   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-08-18 Revised:2022-11-07 Published:2023-02-15 Online:2023-03-07

摘要:

为增强碳纤维织物复合材料对电磁波的阻抗匹配性,减少二次反射,采用玻璃纤维调控碳纤维织物组织结构,并将其与水性聚氨酯复合,设计并制备了5种玻璃纤维/碳纤维(G/C)织物复合材料。借助超景深显微镜、矢量网络分析仪、模拟日光氙灯光源系统、红外热成像仪对G/C织物复合材料的形貌结构、电磁屏蔽性能、介电性能以及光热转化性能进行表征和分析。结果表明:在12.1 GHz下,纬纱采用2根玻璃纤维和单根碳纤维交替排列织造的G/C织物复合材料的屏蔽效能高达38.7 dB;G/C织物复合材料的组织结构变化可有效调控多种介电极化弛豫机制;G/C织物复合材料表面温度在模拟日光氙灯光源照射下响应速度快,其中玻璃纤维和碳纤维单根交替排列的G/C织物复合材料在2 kW/m2光照强度下照射300 s时,其表面温度可达71.8 ℃。

关键词: 碳纤维, 玻璃纤维, 织物复合材料, 电磁屏蔽, 光热转化

Abstract:

Objective The electromagnetic (EM) wave pollution and its secondary reflection bring great threat to human health and to information security. To reduce the secondary reflection pollution of carbon fiber fabric composites, enhancing the impedance matching of carbon fiber fabric is a feasible method.
Method Glass fiber has low dielectric properties; the impedance matching of carbon fiber fabric could be improved by using glass fiber to regulate the fabric structure of the carbon fiber fabric. In this work, five different fabric structures of glass fiber/carbon fiber (G/C) fabric were designed and were compounded with waterborne polyurethane. The morphology, electromagnetic interference (EMI) shielding, dielectric and photothermal conversion properties of glass fiber/carbon fiber composites were characterized by an ultra-depth of field microscope, vector network analyzer, simulated solar xenon lamp light source system and infrared thermal imager.
Results Glass fiber and carbon fiber interweave with each other to form the G/C fabrics structure which was arranged smoothly as illustrated in Fig. 1. The EMI shielding efficiency (SE) of the five G/C fabric composites showed effective EMI shielding. Their average EMI SE was greater than 20.0 dB in the X band (8.2-12.4 GHz) as can be seen in Fig. 3(a). The EMI total shielding efficiency(SET) curves of C fabric (its weft yarns are all carbon fiber) composites was relatively stable, with its SET being 33.4 dB at 9.6 GHz(Fig. 2(a)). The SET curves of G/C fabrics composites decreased firstly and then increased with the increasing frequency within X band after the introduction of glass fiber. The EMI SE value of G2C1 fabric (glass and carbon yarns were woven into the fabric alternately as weft) composite was up to 38.7 dB at 12.1 GHz, as shown in Fig. 2(a). The power coefficients values of absorptivity of G/C fabric composites increased by adding glass fiber. The structural changes in G/C fabric composites effectively regulate various dielectric polarization relaxation mechanisms (Fig. 5), which indicated that the use of G/C fabric structure could improve the impedance matching with the EM wave and reduce the second reflection. The surface temperature of G/C fabric composites responds rapidly under simulated solar xenon lamp light source as shown in Fig. 6. The surface temperature of G/C fabric composites gradually reached equilibrium after rapidly increasing under 2 kW/m2 light intensity and decreased rapidly when the light source was turned off at 300 s and this was demonstrated in Fig. 6(a). With the increase of glass fiber content, their surface equilibrium temperature was decreased, which is consistent with the results of the SET. The fabric structure of G1C1 fabric composite was clear, indicating its rapid response to the light. The equilibrium temperature of G1C1, as shown in Fig. 6(a), reached 71.8 ℃ at 300 s under 2 kW/m2 light intensity. In addition, the time-temperature curves of G1C1 fabric composite under different light intensities (1,1.5,2 kW/m2) showed that the equilibrium temperature (average temperature from 200 s to 300 s) |ΔT1|,|ΔT2| and |ΔT3| were 8.0, 20.6 and 28.6 ℃, respectively. It is indicated that G/C fabric composites have significant differences in response to different light intensities. Light is also a type of electromagnetic wave. It can be inferred that G/C fabric composite material can quickly convert the energy of electromagnetic wave into joule heat dissipation to achieve excellent electromagnetic shielding performance.
Conclusion In this work, five G/C fabric composites were fabricated, each possessing efficient EMI shielding and photothermal conversion properties. The dielectric properties of G/C fabric composites were adjustable by structural parameters of G/C fabrics, and the research results demonstrated that such composites could effectively regulate various dielectric polarization relaxation mechanisms. The impedance matching performance of G/C fabric composites increased to match that of the electromagnetic waves and the secondary reflection of the EM wave was reduced. The method of designing fabric structure has great application potential in EMI shielding materials.

Key words: carbon fiber, glass fiber, fabric composite, electromagnetic interference shielding, photothermal conversion

中图分类号: 

  • TQ343

图1

G/C织物复合材料的光学照片和超景深照片"

图2

G/C织物复合材料在X波段的电磁屏蔽性能"

图3

G/C织物复合材料在X波段的平均电磁屏蔽效能和功率系数"

图4

G/C织物复合材料的复介电性能"

图5

G/C织物复合材料的科尔半圆曲线图"

图6

G/C织物复合材料的光热转化效果图"

[1] ZHONG Lulu, YU Rufang, HONG Xinhua. Review of carbon-based electromagnetic shielding materials: film, composite, foam, textile[J]. Textile Research Journal, 2021, 91(9/10):1167-1183.
doi: 10.1177/0040517520968282
[2] KUMAR R, SAHOO S, JOANNI E, et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding[J]. Carbon, 2021, 177:304-331.
doi: 10.1016/j.carbon.2021.02.091
[3] KARATAS M A, GOKKAYA H. A review on machinability of carbon fiber reinforced poly-mer(CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4):318-326.
doi: 10.1016/j.dt.2018.02.001
[4] RAJAK D K, PAGAR D D, MENEZES P L, et al. Fiber-reinforced polymer composites: manufacturing, properties, and applications[J]. Polymers, 2019. DOI:10.3399/polym11101667.
doi: 10.3399/polym11101667
[5] HWANG S S. Tensile, electrical conductivity and EMI shielding properties of solid and foamed PBT/carbon fiber composites[J]. Composite Part B: Engineering, 2016, 98:1-8.
doi: 10.1016/j.compositesb.2016.05.028
[6] KIM H J, KIM S H, PARK S. Effects of the carbon fiber-carbon microcoil hybrid formation on the effectiveness of electromagnetic wave shielding on carbon fibers-based fabrics[J]. Materials, 2018. DOI:10.3390/ma1112.
doi: 10.3390/ma1112
[7] ZHU Shu, SHI Rujing, QU Mingcheng, et al. Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering[J]. Composites Science Technology, 2021. DOI: 10.1016/j.compscitech.2021.108696.
doi: 10.1016/j.compscitech.2021.108696
[8] LIU Yuansong, GUAN Mingjie, CHEN Xianwen, et al. Flexural properties evaluation of carbon-fiber fabric reinforced poplar/eucalyptus composite plywood formwork[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.111073.
doi: 10.1016/j.compstruct.2019.111073
[9] GUO Yongqiang, QIU Hua, RUAN Kunpeng, et al. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding[J]. Composites Science Technology, 2022. DOI: 10.1016/j.compscitech.2021.109253.
doi: 10.1016/j.compscitech.2021.109253
[10] ROHINI R, BOSE S. Electrodeposited carbon fiber and epoxy based sandwich architectures suppress electromagnetic radiation by absorption[J]. Composites Part B: Engineering, 2019. DOI: 10.1016/j.compositesb.2018.12.123.
doi: 10.1016/j.compositesb.2018.12.123
[11] WEI Huawei, ZHENG Wenhui, JIANG Zaixing, et al. CNT coatings grown on the outer and inner surfaces of magnetic hollow carbon fibers with enhanced electromagnetic interference shielding performance[J]. Journal of Materials Chemistry C, 2019, 7(45):14375-14383.
doi: 10.1039/c9tc04485j
[12] 李欢, 刘钧, 肖加余, 等. 雷达天线罩技术及其电性能研究综述[J]. 材料导报, 2012, 26(15):48-52.
LI Huan, LIU Jun, XIAO Jiayu, et al. An overview on the technology and electromagnetic performance of radome[J]. Materials Reports, 2012, 26(15):48-52.
[13] 张磊, 李永清, 王静南, 等. 雷达隐身复合材料研究进展及在舰船上的应用[J]. 舰船科学技术, 2020, 42(3):144-149.
ZHANG Lei, LI Yongqing, WANG Jingnan, et al. The research and application of radar wave stealth composites for warship[J]. Ship Science and Technology, 2020, 42(3): 144-149.
[14] FAN Wei, YUAN LinJia, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69:71-79.
doi: 10.1016/j.polymertesting.2018.05.007
[15] LEE S E, PARK K Y, OH K S, et al. The use of carbon/dielectric fiber woven fabrics as filters for electromagnetic radiation[J]. Carbon, 2009, 47(8):1896-1904.
doi: 10.1016/j.carbon.2009.02.013
[16] HONG Xinghua, ZHONG Lulu, WAN Junming, et al. Polarization selection characteristics of carbon fiber orientation and interweaving for electromagnetic interference shielding behaviors[J]. Textile Research Journal, 2022, 92(1/2):269-283.
doi: 10.1177/00405175211034248
[17] 刘顺华, 刘军民, 董星龙. 电磁波屏蔽及吸波材料[M]. 北京: 机械工业出版社, 2007:81-118.
LIU Shunhua, LIU Junmin, DONG Xinglong. Electromagnetic wave shielding and absorption mate-rials[M]. Beijing: China Machine Press, 2007:81-118.
[18] YU Rong, XIA Yuanhua, PEI Xiaoyuan, et al. Micro-flower like core-shell structured ZnCo@C@1T-2H-MoS2 composites for broadband electromagnetic wave absorption and photothermal performance[J]. Journal of Colloid and Interface Science, 2022, 622:261-271.
doi: 10.1016/j.jcis.2022.01.179
[1] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[2] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[3] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
[4] 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76.
[5] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
[6] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[7] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[8] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[9] 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80.
[10] 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170.
[11] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[12] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[13] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[14] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[15] 强荣, 冯帅博, 马茜, 陈博文, 陈熠. 钴/碳纤维复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(02): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[2] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[3] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[4] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[5] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[6] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[7] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[8] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[9] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[10] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .