纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 118-127.doi: 10.13475/j.fzxb.20211204510
缪莹1,2, 熊诗嫚1, 郑敏博3, 唐建东3, 张慧霞3, 丁彩玲4, 夏治刚1,2,5()
MIAO Ying1,2, XIONG Shiman1, ZHENG Minbo3, TANG Jiandong3, ZHANG Huixia3, DING Cailing4, XIA Zhigang1,2,5()
摘要:
针对聚酰亚胺(PI)短纤维纺纱静电大、成纱毛羽多、后加工摩擦剧烈导致纱线品质大幅恶化的问题,创新提出了在后加工终端对多毛羽PI单纱进行高光洁处理的方法。通过研制纱线高光洁处理装置和理论模拟,分析了该装置引纱区与涡流包缠关键区的作用机制,应用装置的湿热涡流处理多毛羽PI单纱,并将处理前后的PI单纱实施倍捻和织造,获得PI股线及其织物。结果表明:与处理前相比,高光洁处理后的PI单纱有害毛羽去除率为97.69%、耐磨性提高48.84%,PI股线有害毛羽去除率为64.67%、耐磨性提高40.89%;处理后纱线所织造织物的柔软性、透气性、抗起毛起球性、抗静电性均得到改善。
中图分类号:
[1] | 朱璇, 钱明球, 虞鑫海, 等. 聚酰亚胺及其纤维的研究与开发进展:Ⅰ[J]. 合成技术及应用, 2013, 28(1):15-20. |
ZHU Xuan, QIAN Mingqiu, YU Xinhai, et al. The research and development progress in polyimides and its fiber:Ⅰ[J]. Synthetic Technology and Application, 2013, 28(1):15-20. | |
[2] |
LIAW Derjang, WANG Kungli, HUANG Yingchi, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7):907-974.
doi: 10.1016/j.progpolymsci.2012.02.005 |
[3] | 朱璇, 钱明球, 虞鑫海, 等. 聚酰亚胺及其纤维的研究与开发进展:Ⅱ[J]. 合成技术及应用, 2013, 28(2):24-29. |
ZHU Xuan, QIAN Mingqiu, YU Xinhai, et al. The research and development progress in polyimides and its fiber:Ⅱ[J]. Synthetic Technology and Application, 2013, 28(2):24-29. | |
[4] |
TAKAHO Kaneda, TOSHIO Katsura, KANJI Nakagawa, et al. High-strength-high-modulus polyimide fibers: II:spinning and properties of fibers[J]. Journal of Applied Polymer Science, 1986, 32(1):3151-3176.
doi: 10.1002/app.1986.070320122 |
[5] |
IRWINBR S, SWEENY W. Polyimide fibers[J]. Journal of Polymer Science Part C: Polymer Symposia, 1967, 19(1):41-48.
doi: 10.1002/polc.5070190107 |
[6] | 张清华, 陈大俊, 丁孟贤. 聚酰亚胺纤维[J]. 高分子通报, 2001(5): 66-73. |
ZHANG Qinghua, CHEN Dajun, DING Mengxian. Polyimide fibers[J]. Polymer Bulletin, 2001(5):66-73. | |
[7] | 潘涛, 江慧, 傅婷, 等. 聚酰亚胺纤维纺纱工艺研究与纱线性能分析[J]. 纺织器材, 2015, 42(4):22-26. |
PAN Tao, JIANG Hui, FU Ting, et al. Analysis of polyimide fiber spinning technology and yarn proper-ties[J]. Textile Accessories, 2015, 42(4):22-26. | |
[8] | 尹桂波, 刘梅城, 洪杰. 聚酰亚胺纤维纱线的开发及保暖性能研究[J]. 上海纺织科技, 2018, 46(6):55-59. |
YIN Guibo, LIU Meicheng, HONG Jie. Development of polyimide fiber yarn and its warmth retention property[J]. Shanghai Textile Science & Technology, 2018, 46(6):55-59. | |
[9] | MOMIR Nikolić, ZORAN Stjepanovič, FRANC Lesjak, et al. Compact spinning for improved quality of ring-spun yarns[J]. Fibres & Textiles in Eastern Europe, 2003, 4(43): 30-35. |
[10] | 赵博. 赛络纺复合纱的生产实践及工艺探讨[J]. 浙江纺织服装职业技术学院学报, 2017, 16(1):13-17. |
ZHAO Bo. Production practice and process discussion of siro spun composite yarn[J]. Journal of Zhejiang Fashion Institute of Technology, 2017, 16(1):13-17. | |
[11] |
AN Xianglong, YU Chongwen. Dynamic model of sirospun process. part I: theoretical dynamic model[J]. Journal of The Textile Institute, 2009, 101(9): 805-811.
doi: 10.1080/00405000902945550 |
[12] | 王晓梅, 柯勤飞. 气流纺纱[J]. 国外纺织技术, 2003(1):10. |
WANG Xiaomei, KE Qinfei. Airflow spins yarns[J]. Textile Technology Overseas, 2003(1):10. | |
[13] | 何春泉. 解读扭妥环纺[J]. 上海毛麻科技, 2010(2):12-14. |
HE Chunquan. Interpreting twisted spinning[J]. Shanghai Wool & Jute Journal, 2010(2):12-14. | |
[14] | 夏治刚. 湿热对纤维素纤维拉伸性能的影响及其在光洁成纱中的应用[D]. 上海: 东华大学, 2012:4-10. |
XIA Zhigang. Mechanism of moisture and temperature influence on cellulose textile fibers' tensile properties and its application in smooth yarn production[D]. Shanghai: Donghua University, 2012:4-10. | |
[15] | 方玉婷, 王士华, 郭涛, 等. 热拉伸条件对聚酰亚胺纤维结构和性能的影响[J]. 合成纤维, 2020, 49(9):17-21. |
FANG Yuting, WANG Shihua, GUO Tao, et al. The effects of post hot-drawing on structure and properties of polyimide fiber[J]. Synthetic Fiber in China, 2020, 49(9):17-21. | |
[16] | 闫琳琳, 邹专勇, 卫国, 等. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(9):139-145. |
YAN Linlin, ZOU Zhuanyong, WEI Guo, et al. Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves[J]. Journal of Textile Research, 2018, 39(9):139-145. | |
[17] |
SHIN T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
doi: 10.1016/0045-7930(94)00032-T |
[18] | 陈兵海. 旋转气流作用下纱线缠绕过程数值模拟及其实验验证[D]. 杭州: 浙江理工大学, 2018:26-37. |
CHEN Binghai. Numerical simulation and experimental validation of yarn splicing under the role of rotating airflow[D]. Hangzhou: Zhejiang Sci-Tech University, 2018:26-37. | |
[19] | 尚珊珊. 高速旋转气流/纤维耦合运动特性的数值模拟与实验研究[D]. 上海: 东华大学, 2019:18-49. |
SHANG Shanshan. Numerical simulation and experimental study of high-speed rotating airflow/fiber coupling motion characteristics[D]. Shanghai: Donghua University, 2019:18-49. | |
[20] |
XIA Z, WANG X, YE W, et al. Experimental investigation on the effect of singeing on cotton yarn properties[J]. Textile Research Journal, 2009, 79(17):1610-1615.
doi: 10.1177/0040517508099389 |
[1] | 张青青, 倪远, 汪军, 张玉泽, 江慧. 转轮集聚纺纱装置与工艺设计[J]. 纺织学报, 2023, 44(02): 83-89. |
[2] | 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175. |
[3] | 邓中民, 于东洋, 胡灏东, 李童, 柯薇. 纱线毛羽路径匹配追踪检测[J]. 纺织学报, 2022, 43(09): 101-106. |
[4] | 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81. |
[5] | 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33. |
[6] | 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28. |
[7] | 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132. |
[8] | 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175. |
[9] | 郭敏, 王静安, 郭明瑞, 高卫东. 基于毛羽图像检测的浆纱抗起毛性能评价[J]. 纺织学报, 2022, 43(03): 78-82. |
[10] | 董晗, 郑森森, 郭涛, 董杰, 赵昕, 王士华, 张清华. 高耐热聚酰亚胺纤维的制备及其性能[J]. 纺织学报, 2022, 43(02): 19-23. |
[11] | 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79. |
[12] | 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158. |
[13] | 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172. |
[14] | 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63. |
[15] | 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100. |
|