纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 135-142.doi: 10.13475/j.fzxb.20220700808

• 纺织工程 • 上一篇    下一篇

仿生鳞片针织结构自供能传感织物的制备及其性能

牛丽, 刘青, 陈超余, 蒋高明, 马丕波()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-07-04 修回日期:2022-11-06 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 马丕波(1984—),男,教授,博士。主要研究方向为针织结构材料设计与性能。E-mail:mapibo@jiangnan.edu.cn。
  • 作者简介:牛丽(1991—),女,博士生。主要研究方向为功能与智能针织结构材料。
  • 基金资助:
    国家自然科学基金项目(11972172)

Fabrication and performances of self-powering knitted sensing fabric with bionic scales

NIU Li, LIU Qing, CHEN Chaoyu, JIANG Gaoming, MA Pibo()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-07-04 Revised:2022-11-06 Published:2023-02-15 Online:2023-03-07

摘要:

为研究仿生鳞片针织结构自供能传感织物结构对其性能的影响,利用针织成形工艺将锦纶纱线、聚四氟乙烯纱线及镀银锦纶纱线设计并制备三维仿生鳞片针织结构,形成基于仿生鳞片针织结构的自供能传感织物,并对其性能进行研究。结果表明:该仿生鳞片针织结构自供能传感织物可大规模织造,其电学输出性能受鳞片与间隔部分接触面积的影响,可通过调节纵向间隔来调控其电学性能;织物的各向异性与鳞片的纵向间隔及排列方式有关,小纵向间隔、叠瓦状排列方式下的应变强化特征明显,可提供较强的支撑性;该自供能传感织物保持织物内在舒适性的同时,兼具智能性与功能性,满足柔性与防护性需求。

关键词: 锦纶, 聚四氟乙烯, 仿生鳞片结构, 全成形针织技术, 自供能, 传感织物, 智能纺织品, 各向异性材料

Abstract:

Objective To meet the requirements for functions, intelligence, and wearability of wearable devices for smart outdoor apparel applications, a self-powering knitted sensing fabric with bionic scales(BSK-TENG) is designed from the inspiration of natural selection, which combines the scales structure with protection and flexibility. The flexibility of scale-structured fabric not only satisfies the common wearing, but generates electrical outputs to supply energy for outdoors sensors. It is envisaged that this type of fabric with full fiber structure will provide novel ideas for multifunctional wearable electronics while maintaining the intrinsic performance of textiles.
Method The complex three-dimensional bionic scale knitting fabric was fabricated by a double-bed computerized flat knitting machine, representing the industrial production. The triboelectric nanogenerators were used as a convertor based on a coupled effect of contact electrification and electrostatic induction, generate periodic electrical outputs during mechanical movements. The single-sided scales were consistent with the single electrode working mode, which proved to be facile to construct the self-powering scale-structured knitted sensing fabric. For the triboelectric series of materials, polyamide (PA) yarns and a polytetrafluoroethylene(PTFE) yarn were selected as a pair of contact materials, and Ag-plated polyamide yarns were employed as the electrodes for electronic signal transfer.
Results The influence of structural features of scale-structured knitted sensing fabric on electrical and mechanical properties were comprehensively investigated for novel applications. The results show that the BSK-TENG as a novel wearable device can be manufactured in mass scale and formed in a single process (Fig. 2). Through the linear motor (Fig. 3), the PA yarn establish contact with the scales working as the single electrode (Fig. 4), generating the electrical outputs. In order to analysis the effect of fabric structural parameters on the electrical output performance, fabrics with different vertical spaces and scaly layouts were designed and fabricated to regulate the output performance, and the electrical outputs were measured. The electrical performance is enhanced as the vertical spaces increase, which caused the increase of the contact area (Fig. 5). For different layouts of the scaly fabrics, the electrical outputs show no difference between the parallel type and the imbricate type (Fig. 6). In addition, BSK-TENG exhibits satisfactory the stability and force sensitivity for monitoring the force change to obtain a high gauge factor (Fig. 7 and Fig. 8). Considering the asymmetry of fabric surface, the bending performance of scale knitting fabric demonstrates obvious differentiation, indicating lower stiffness on the intrados side than that on the extrados side (Fig.9). It turns out that the scale knitting fabric has special anisotropic mechanical property. With small interval spaces, the overlapping scale distribution has an obvious strain-stiffening response, which offers strong support for joint protection. BSK-TENG is utilized as the wearable device, which requires suitable level of air-permeability for wearing comfort. Due to the scaly structure, fabrics with different surface designs demonstrated distinctive testing results, but not decreasing the fabric breathability (Fig. 10).
Conclusion Industrial production of self-powering knitted sensing fabrics was achieved using knitting technology, achieving the one-piece complex three-dimensional fabric structure. The effect of interval spaces between scales on the electrical outputs were discussed and analyzed. It is found that fabrics with cover factor 0.7 generates higher electrical outputs, with the contact area equal to the scale area. This indicates that the design of interval space plays an important role in regulates the electrical output performance of BSK-TENG. Furthermore, a good linear relationship between electrical outputs and external force is established and it can be utilized for fabricate the self-powered sensor. The scaly layouts have little influence on the output performance, however there is a significant difference in stiffness performance. The scale knitted fabric has an apparent strain hardening effect, especially for the scaly section of the fabric, which could lead to a potential joint protection application. The smart textile with both intelligence and functions can satisfy the conflicting requirements of protection and flexibility while maintaining textile intrinsic good performances. It is envisaged that the high-speed production of soft bionic scale-structured fabric with both intelligence and functions will bring opportunities for the future development of wearables.

Key words: polyamide, polytetrafluoroethylene, bionic scale structure, fully-forming knitting technology, self-powered, sensing fabric, smart textile, anisotropic material

中图分类号: 

  • TS141.8

图1

不同鳞片排列方式示意图"

图2

仿生鳞片针织结构织物实物图及编织图"

图3

仿生鳞片自供能传感织物的电学输出性能测试示意图"

图4

BSK-TENG的示意图与传感机制"

表1

织物结构设计参数表"

试样
编号
纵向间
隔/mm
相对覆
盖系数
面密度/
(g·m-2)
横密/
(纵行数·
cm-1)
纵密/
(横列数·
cm-1)
1# 3 0.3 1 912 10 12.8
2# 5 0.5 1 709
3# 7 0.7 1 594
4# 9 0.9 1 308

图5

不同鳞片纵向间隔的BSK-TENG电学输出性能"

图6

不同鳞片排列方式BSK-TENG的电学输出性能"

图7

BSK-TENG的电学输出性能稳定性"

图8

不同外力作用下BSK-TENG的电学输出性能"

图9

BSK-TENG抗弯刚度比较"

图10

BSK-TENG透气性测试结果"

[1] DONG K, PENG X, WANG Z L. Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902549.
doi: 10.1002/adma.201902549
[2] 吴荣辉, 马丽芸, 张一帆, 等. 银纳米线涂层的编链结构纱线拉伸应变传感器[J]. 纺织学报, 2019, 40(12): 45-49, 62.
WU Ronghui, MA Liyun, ZHANG Yifan, et al. Strain sensor based on silver nanowires coated yarn with chain stitch structure[J]. Journal of Textile Research, 2019, 40(12): 45-49, 62.
[3] WANG Z L, WANG A. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34-51.
doi: 10.1016/j.mattod.2019.05.016
[4] 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9): 1-9.
FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fibrous materials for intelligent wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9.
doi: 10.1177/004051757204200101
[5] HUANG T, ZHANG J, YU B, et al. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power[J]. Nano Energy, 2019, 58: 375-383.
doi: 10.1016/j.nanoen.2019.01.038
[6] KWAK S, KIM H, SEUNG W, et al. Fully stretchable textile triboelectric nanogenerator with knitted fabric structures[J]. ACS Nano, 2017, 11(11): 10733-10741.
doi: 10.1021/acsnano.7b05203 pmid: 28968064
[7] CHEN C Y, CHEN L J, WU Z Y, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020, 32: 84-93.
doi: 10.1016/j.mattod.2019.10.025
[8] FAN W J, HE Q, MENG K Y, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aay2840.
doi: 10.1126/sciadv.aay2840
[9] 李娜, 李辉芹, 巩继贤, 等. 基于仿生原理的纺织品研究新进展[J]. 纺织学报, 2012, 33(5): 150-156.
LI Na, LI Huiqin, GONG Jixian, et al. Research progress of textiles based on biomimetic principles[J]. Journal of Textile Research, 2012, 33(5): 150-156.
[10] 朱德举, 镇鑫楼. 仿鱼鳞片结构的防护装具抗穿甲燃烧弹性能[J]. 复合材料学报, 2022, 39(12): 1-8.
ZHU Deju, ZHEN Xinlou. Performance of the protective gear inspired by fish scale structure against armor-piercing incendiary bullets[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 1-8.
[11] WANG C X, LV Z S, MOHAN M P, et al. Pangolin-inspired stretchable, microwave-invisible metascale[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202102131.
doi: 10.1002/adma.202102131
[12] YU C M, LIU M F, ZHANG C H, et al. Bio-inspired drag reduction: from nature organisms to artificial functional surfaces[J]. Giant, 2020. DOI: 10.1016/j.giant.2020.100017.
doi: 10.1016/j.giant.2020.100017
[13] NIU L, MIAO X H, LI Y T, et al. Surface morphology analysis of knit structure-based triboelectric nanogenerator for enhancing the transfer charge[J]. Nanoscale Research Letters, 2020, 15(1): 1-12.
doi: 10.1186/s11671-019-3237-y
[1] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[2] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[3] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[4] 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183.
[5] 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111.
[6] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[7] 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108.
[8] 吕晓双, 刘丽萍, 俞建勇, 丁彬, 李召岭. 纤维基自供能电子皮肤的构建及其应用性能研究进展[J]. 纺织学报, 2022, 43(10): 183-191.
[9] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[10] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[11] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[12] 程绿竹, 王宗乾, 盛红梅, 钟辉, 夏丽萍. 锦纶织物中氯菊酯含量测试方法比较[J]. 纺织学报, 2022, 43(09): 143-148.
[13] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[14] 权衡, 任敬之, 陈文龙, 袁辉, 谢南平, 巫若子, 倪丽杰. 有机硅及其共混物在锦纶/氨纶织物上的迁移与分布[J]. 纺织学报, 2022, 43(06): 115-120.
[15] 慕怡菲, 金子敏, 阎玉秀, 吴德昊, 周文龙, 陶建伟. 远红外锦纶织物对乳腺肿瘤细胞增殖的影响[J]. 纺织学报, 2022, 43(05): 109-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[3] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[4] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[5] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[6] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .
[7] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[8] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[9] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[10] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .