纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 143-150.doi: 10.13475/j.fzxb.20220804308

• 纺织工程 • 上一篇    下一篇

基于深度信念网络的织物疵点检测

李杨1, 彭来湖1,2, 李建强2(), 刘建廷1, 郑秋扬1, 胡旭东1   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江理工大学龙港研究院有限公司, 浙江 温州 325000
  • 收稿日期:2022-08-16 修回日期:2022-11-22 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 李建强(1990—),男,博士。主要研究方向为图像处理和模式识别。E-mail:wzcnljq@126.com。
  • 作者简介:李杨(1994—),男,博士生。主要研究方向为图像处理在纺织上的应用。
  • 基金资助:
    浙江省博士后科研项目特别资助项目(ZJ2020004)

Fabric defect detection based on deep-belief network

LI Yang1, PENG Laihu1,2, LI Jianqiang2(), LIU Jianting1, ZHENG Qiuyang1, HU Xudong1   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Sci-Tech University Longgang Research Institute, Wenzhou, Zhejiang 325000, China
  • Received:2022-08-16 Revised:2022-11-22 Published:2023-02-15 Online:2023-03-07

摘要:

为提高织物疵点检测精度和效率,提出了一种基于深度信念网络的织物疵点检测方法。用改进的受限玻尔兹曼机模型对深度信念网络进行训练,完成模型识别参数的构建。利用同态滤波方法对图像进行预处理,使疵点图像更加清晰,同时抑制了背景图像。以Python语言,基于TensorFlow框架构建深度信念网络模型,对织物疵点图像进行处理得到学习样本,确定模型激活函数后,分析了各模型参数对织物疵点检测准确率的影响规律,得到激活函数为Relu, Dropout值为0.3,预训练学习率为0.1,微调学习率为0.000 1,批训练个数为64时,模型参数值达到最优。最后,利用在无缝内衣机上采集到的各类疵点图像,对深度信念网络织物疵点检测模型进行验证。结果表明:所提出的织物疵点检测方法能够快速、有效地对织物疵点进行检测和分类识别,准确率达到98%。

关键词: 织物疵点检测, 深度学习, 深度信念网络, 受限玻尔兹曼机, 图像处理

Abstract:

Objective In order to improve the quality of textile products, increase economic benefits, and reduce production costs in order to improve production efficiency, it is of great significance to achieve intelligent detection of fabric defects. A fabric defect detection method based on deep-belief network (DBN) is proposed, and the deep-belief network is trained by the improved restricted Boltzmann machine model to complete the construction of model recognition parameters, which can not only independently extract fabric image data features, screen effective information for transmission, but also have a short training time and fast model convergence speed.
Method In order to make the best training effect of the model, this paper enriches the samples by using the data augmentation method to meet the training requirements of the DBN model. The homomorphic filtering method is used to preprocess the image to reduce the low frequency and increase the high frequency, and sharpen the details of the image edges, making the defective image clearer and suppressing the background image. In order to solve the overfitting problem of the model and improve the generalization ability of the model, the DBN-Dropout model is used to set the output information in the network to 0, the contrastive divergence method is employed to initialize the visual layer of the training sample, the activation probability of neurons in the hidden layer of the model is calculated, and the activation status of neurons in the hidden layer and the visual layer is assessed. In Python language, a DBN model is built based on the TensorFlow framework, and the learning samples are obtained by processing the fabric defect images. In the weft knitting laboratory of the Knitting Engineering Technology Research Center at Zhejiang Sci-Tech University, the area scan CCD camera was combined with the 6 mm focal length lens (FL-HC0614-2M) produced by Ricoh Corporation of Japan, and 200 images were collected of different types of plain weft knitted fabrics produced by the RFSM20 high-speed seamless underwear machine developed by Zhejiang Rifa Textile Machinery Co., Ltd., including 50 images of normal flawless fabrics and 150 images of fabrics with various defects. The collected fabric image samples were grayscale images with a size of 512 pixels×512 pixels, and the 100 fabric images collected were detected by the DBN model.
Results Cross-entropy and Adam were used as loss functions and optimizers respectively, the activation function, loss function and optimizer of the model were studied with the fabric defect dataset, and then the activation function, Dropout value, learning rate and training batch number of the model were analyzed with the fabric defect dataset. The activation function was a Relu function, whose Dropout value was 0.3, pre-training learning rate was 0.1, fine-tuning learning rate was 0.000 1, and batch training number was 64, model and the parameter values were optimal. 512 pixel×512 pixel fabric images were used to conduct experiments in MatLab2019b environment, and the results of the experiments on the TILDA dataset using particle swarm optimization(PSO)-BP neural network and local contrast deviation method were compared with the algorithm proposed in this paper, and it is concluded that the proposed deep-belief network has better detection results and clearer target contour recognition for fabric defect detection under complex background than the other two methods. In order to evaluate the applicability of this algorithm, defect images weft knitted fabrics with different types of defects were used for detection. For the practical testing of 100 pictures, the experimental results were combined with the detection effect chart, which showed that the algorithm introduced in this paper has good detection results for fabric holes, oil pollution and yarn breaking defects, and its detection accuracy rate reaches 98%, which verifies the algorithm's adaptability, effectiveness and accuracy for fabric defect detection.
Conclusion The experimental results show that the DBN network model has a good detection effect on fabric defects, which can not only identify the shape and outline of fabric defects, but also detect different types of fabric defects, which shows the effectiveness of the algorithm.

Key words: fabric defect detection, deep learning, deep-belief network, restricted Boltzmann machine, image processing

中图分类号: 

  • TS181.9

图1

织物疵点检测流程"

图2

预处理前后图像对比"

图3

织物疵点数据训练结果"

图4

预训练学习率对模型损失值的影响"

图5

微调学习率对模型损失值的影响"

图6

批训练个数对准确率的影响"

图7

不同算法检测结果"

图8

不同类型织物疵点检测结果"

表1

疵点检测统计结果"

疵点
类型
检测数量/张 检测结果 综合检
测率/%
未检测出 检测出 准确率/% 虚警率/%
破洞 1 49 96.6 2.0 98
油污 2 48 96.0 4.0
断纱 1 49 96.6 2.0
不含疵点 0 50 100.0 0.0
[1] KAZM H B, TALU M F, ÖMER Faruk Ö. Fabric defect detection systems and methods:a systematic literature review[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(24): 11960-11973.
doi: 10.1016/j.ijleo.2016.09.110
[2] 尉苗苗. 织物疵点检测算法研究和系统实现[D]. 无锡: 江南大学, 2017:1-2.
WEI Miaomiao. Research and system implementation of fabric defect detection algorithm[D]. Wuxi: Jiangnan University, 2017:1-2.
[3] 张星烨. 织物疵点自动检测系统关键技术的研究[D]. 无锡: 江南大学, 2012:2-4.
ZHANG Xingye. Research on key technologies of fabric defect spot automatic detection system[D]. Wuxi: Jiangnan University, 2012:2-4.
[4] CHAN C H, PANG G K H. Fabric defect detection by Fourier analysis[J]. IEEE Transactions on Industry Applications, 2000, 36 (5):1267-1276.
doi: 10.1109/28.871274
[5] 温智婕. 图像纹理特征表示方法研究与应用[D]. 大连: 大连理工大学, 2008:25-27.
WEN Zhijie. Research and application of image texture feature representation method[D]. Dalian: Dalian University of Technology, 2008:25-27.
[6] GONG C, TAO D, LIU W, et al. Saliency propagation from simple to difficult[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 44-57.
[7] 宫辰. 数据驱动的图推断算法研究[D]. 上海: 上海交通大学, 2017:111-119.
GONG Chen. Research on data-driven graph inference algorithm[D]. Shanghai: Shanghai Jiao Tong University, 2017:111-119.
[8] 沈咏军, 朱桂英. 基于人工神经网络的织物疵点检测[J]. 丝绸, 2007, 44(6):38-41.
SHEN Yongjun, ZHU Guiying. Fabric defect detection based on artificial neural network[J]. Journal of Silk, 2007, 44(6):38-41.
[9] LIU S, LIU J, ZHANG L. Classification of fabric defect based on PSO-BP neural network[C]// International Conference on Genetic & Evolutionary Computing. Jinzhou: IEEE, 2008:137-140.
[10] 王春静, 许圣梅. 基于内容的图像检索的相似度测量方法[J]. 数据采集与处理, 2017(1):104-110.
WANG Chunjing, XU Shengmei. Similarity measurement method based on content-based image retrieval[J]. Data Acquisition and Processing, 2017 (1):104-110.
[11] LI P F, ZHANG H H, JING J F, et al. Fabric defect detection based on local entropy[J]. Advanced Materials Research, 2012, 562-564:1998-2001.
[12] LIU Z, YAN L, LI C, et al. Fabric defect detection based on sparse representation of main local binary pattern[J]. International Journal of Clothing Science and Technology, 2017, 29(3):282-293.
doi: 10.1108/IJCST-04-2016-0040
[13] WANG Y, XU X, YUE N, et al. Edge-preserving background estimation using most similar neighbor patch for small target detection[C]// CCF Chinese Conference on Computer Vision. Singapore: Springer, 2017:84-95.
[14] 杜磊, 李立轻, 汪军, 等. 几种基于图像自适应阈值分割的织物疵点检测方法比较[J]. 纺织学报, 2014, 35(6): 56-61.
DU Lei, LI Liqing, WANG Jun, et al. Comparison of several fabric defect detection methods based on image adaptive threshold segmentation[J]. Journal of Textile Research, 2014, 35(6):56-61.
[15] 刘方园, 王水花, 张煜东. 深度置信网络模型及应用研究综述[J]. 计算机工程与应用, 2018, 54 (1): 11-18,47.
doi: 10.3778/j.issn.1002-8331.1711-0028
LIU Fangyuan, WANG Shuihua, ZHANG Yudong. A review of deep confidence network models and their applications[J]. Computer Engineering and Applications, 2018, 54(1): 11-18,47.
doi: 10.3778/j.issn.1002-8331.1711-0028
[16] HINTON G E. Training products of experts by minimizing cont-rastive divergence[J]. Neural Computation, 2002, 14(8) : 1771-1800.
doi: 10.1162/089976602760128018
[1] 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178.
[2] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[3] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[4] 张东剑, 甘学辉, 杨崇倡, 韩阜益, 刘香玉, 谈渊, 廖壑, 王松林. 纺丝过程中非接触式纤维张力检测技术研究进展[J]. 纺织学报, 2022, 43(11): 188-194.
[5] 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160.
[6] 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182.
[7] 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73.
[8] 马运娇, 王蕾, 潘如如, 高卫东. 基于平面镜成像的纱线条干三维合成校准方法[J]. 纺织学报, 2022, 43(07): 55-59.
[9] 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169.
[10] 张荣根, 冯培, 刘大双, 张俊平, 杨崇倡. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(04): 153-159.
[11] 熊晶晶, 杨雪, 苏静, 王鸿博. 基于图像技术的织物导湿性能测试方法[J]. 纺织学报, 2021, 42(12): 70-75.
[12] 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136.
[13] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[14] 杨争妍, 薛文良, 张传雄, 丁亦, 马颜雪. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(07): 164-168.
[15] 夏旭文, 孟朔, 潘如如, 高卫东. 基于改进帧间差分法的经纱撞筘拥纱在线检测[J]. 纺织学报, 2021, 42(06): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[4] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[5] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[6] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[7] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[8] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[9] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .
[10] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58 -60 .