纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 63-68.doi: 10.13475/j.fzxb.20220806106
HU Baoji, ZHANG Qiaoling, WANG Xu()
摘要:
为拓宽热塑性环氧树脂在纺织材料领域的应用,以聚合-热压工艺制备了热塑性环氧树脂膜,进一步利用熔融分散工艺将聚乙二醇(PEG)分散至热塑性环氧树脂中制备环氧树脂/PEG粒料,并通过熔融-牵伸工艺制备环氧树脂/PEG长丝。探讨了环氧树脂/PEG的可纺性,分析了环氧树脂膜和环氧树脂/PEG长丝的力学与动态力学性能。结果表明:所制备的环氧树脂膜屈服应力为64.6 MPa,玻璃化转变温度可达100.2 ℃;PEG的加入使环氧树脂/PEG粒料的挤出力显著降低,当PEG质量分数为5%时,相比于纯环氧树脂挤出力降低了870 N;PEG对热塑性环氧树脂的纺丝温度具有调控作用,当PEG质量分数为7.5%时,相比于纯环氧树脂粒料,环氧树脂/PEG粒料的纺丝温度降低了30 ℃;经PEG改性后的环氧树脂长丝具有更小的直径和更优异的力学性能,相比于纯环氧树脂长丝,PEG质量分数为7.5%的环氧树脂/PEG长丝直径降低了50 μm,PEG质量分数为2.5%的环氧树脂/PEG长丝的断裂应变与断裂应力分别增加了60%和20 MPa。
中图分类号:
[1] | 庄群, 张飞, 杜兆芳, 等. 改性芳纶与环氧树脂复合体的制备及其防刺性能[J]. 纺织学报, 2019, 40(12): 98-103. |
ZHUANG Qun, ZHANG Fei, DU Zhaofang, et al. Preparation of modified aramid fiber and epoxy resin composites and stab resistance thereof[J]. Journal of Textile Research, 2019, 40(12): 98-103. | |
[2] |
WAZARKAR K, KATHALEWAR M, SABNIS A. Development of epoxy-urethane hybrid coatings via non-isocyanate route[J]. European Polymer Journal, 2016, 84: 812-827.
doi: 10.1016/j.eurpolymj.2016.10.021 |
[3] | GAO Wentong, BIE Mengyao, LIU Fu, et al. Self-healable and reprocessable polysulfide sealants prepared from liquid polysulfide oligomer and epoxy resin[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15798-15808. |
[4] |
MA Yijia, CARLOS A Navarro, TRAVIS J Williams, et al. Recovery and reuse of acid digested amine/epoxy-based composite matrices[J]. Polymer Degradation and Stability, 2020. DOI: 10.1016/j.polymdegradstab.2020.109125.
doi: 10.1016/j.polymdegradstab.2020.109125 |
[5] |
PETER A Arrabiyeh, DAVID May, MAXIMILIAN Eckrich, et al. An overview on current manufacturing technologies: processing continuous rovings impregnated with thermoset resin[J]. Polymer Composites, 2021, 42(11): 5630-5655.
doi: 10.1002/pc.v42.11 |
[6] |
RICKY Hardis, JULIE L P Jessop, FRANK E Peters, et al. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 100-108.
doi: 10.1016/j.compositesa.2013.01.021 |
[7] |
KUNAL Wazarkar, MUKESH Kathalewar, ANAGHA Sabnis. Development of epoxy-urethane hybrid coatings via non-isocyanate route[J]. European Polymer Journal, 2016, 84: 812-827.
doi: 10.1016/j.eurpolymj.2016.10.021 |
[8] |
SUN Zeyu, XU Lei, CHEN Zhengguo, et al. Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone[J]. Polymers, 2019, 11(3): 461-477.
doi: 10.3390/polym11030461 |
[9] |
DI Chengrui, YU Junwei, WANG Baoming, et al. Study of hybrid nanoparticles modified epoxy resin used in filament winding composite[J]. Materials, 2019.DOI: 10.3390/ma12233853.
doi: 10.3390/ma12233853 |
[10] |
WANG Xin, ZHAO Xing, CHEN Siqi, et al. Static and fatigue behavior of basalt fiber-reinforced thermoplastic epoxy composites[J]. Journal of Composite Materials, 2020, 54(18): 2389-2398.
doi: 10.1177/0021998319896842 |
[11] |
ZHANG Guogao, YIN Tenghao, NIAN Guodong, et al. Fatigue-resistant polyurethane elastomer composites[J]. Extreme Mechanics Letters, 2021.DOI: 10.1016/j.eml.2021.101434.
doi: 10.1016/j.eml.2021.101434 |
[12] |
NICOLE E Zander, MARGARET Gillan, ZACHARY Burckhard, et al. Recycled polypropylene blends as novel 3D printing materials[J]. Additive Manufacturing, 2019, 25: 122-130.
doi: 10.1016/j.addma.2018.11.009 |
[13] |
KIM M T, RHEE K Y, LEE J H, et al. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes[J]. Composites Part B:Engineering, 2011, 42(5):1257-1261.
doi: 10.1016/j.compositesb.2011.02.005 |
[14] | 徐铭涛, 嵇宇, 仲越, 等. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(9): 203-210. |
XU Mingtao, JI Yu, ZHONG Yue, et al. Review on toughening modification of carbon fiber/epoxy resin composites[J]. Journal of Textile Research, 2022, 43(9):203-210. |
[1] | 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10. |
[2] | 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87. |
[3] | 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93. |
[4] | 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210. |
[5] | 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35. |
[6] | 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131. |
[7] | 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43. |
[8] | 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68. |
[9] | 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42. |
[10] | 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179. |
[11] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[12] | 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89. |
[13] | 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93. |
[14] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[15] | 宋乐, 沈兰萍, 黄显雯, 衡芳芳, 马洪波, 欧阳琴, 陈鹏, 王瑄. 木质素/聚丙烯腈复合纤维的制备及其性能[J]. 纺织学报, 2020, 41(02): 7-12. |
|