纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 69-75.doi: 10.13475/j.fzxb.20220809007

• 纤维材料 • 上一篇    下一篇

丝瓜络衍生碳纤维基复合材料的电磁波吸收性能

冯帅博1, 强荣1,2(), 邵玉龙3, 杨啸1, 马茜1, 陈博文1, 陈熠1, 高明洋1, 陈彩虹1   

  1. 1.中原工学院 纺织学院, 河南 郑州 450007
    2.先进纺织装备技术省部共建协同创新中心, 河南 郑州 450007
    3.黄河科技学院 工学部, 河南 郑州 450061
  • 收稿日期:2022-08-18 修回日期:2022-11-28 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 强荣(1989—),女,副教授,博士。研究方向为碳基吸波材料制备及防辐射功能整理。E-mail:casey2009@126.com。
  • 作者简介:冯帅博(1995—),男,硕士。主要研究方向为多孔磁性碳基吸波材料/织物的开发。
  • 基金资助:
    国家自然科学基金青年基金项目(51902359);中国纺织工业联合会科技指导性项目(2021044);河南省重点研发与推广专项(202102210017);河南省高等学校重点科研项目(20A150047);中原工学院青年骨干教师项目(2020XQG02);河南省博士后科研项目启动资助项目(247131);中原工学院自然科学基金面上项目(K2023MS009);中原工学院学科青年硕导培育计划项目(20232023)

Microwave absorption performance of loofah sponge derived carbon fiber composites

FENG Shuaibo1, QIANG Rong1,2(), SHAO Yulong3, YANG Xiao1, MA Qian1, CHEN Bowen1, CHEN Yi1, GAO Mingyang1, CHEN Caihong1   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Advanced Textile Equipment Technology Provincial and Ministerial Collaborative Innovation Center, Zhengzhou, Henan 450007, China
    3. Faculty of Engineering, Huanghe S & T University, Zhengzhou, Henan 450061, China
  • Received:2022-08-18 Revised:2022-11-28 Published:2023-02-15 Online:2023-03-07

摘要:

为解决当前多孔磁性碳基吸波材料制备工艺繁杂、能耗高、环境不友好等问题,提出基于多孔生物质源衍生的绿色环保策略。以高孔隙丝瓜络为前驱体,Co2+为金属源,二甲基咪唑为配体,经配位自组装获得丝瓜络/金属有机骨架结构复合材料,并经高温煅烧得到碳纤维基钴/碳(LS-Co/C)复合材料。结果表明:在800 ℃煅烧后,LS-Co/C展现了优异的吸波性能,厚度为1.5 mm时有效吸收带宽为5.2 GHz (12.8~18.0 GHz),其良好的吸波特性得益于错综复杂的三维多孔网络结构为电磁波提供了适宜的损耗空间,在电磁场作用下产生感应电流,并在碳纤维导电网络中快速衰减,同时钴/碳复合材料与碳纤维形成的多重界面极化助力电磁波进一步衰减。该研究将为新型多孔磁性碳基吸波材料的设计开发提供策略。

关键词: 碳纤维, 钴/碳复合材料, 生物质, 吸波材料, 多孔材料, 丝瓜络, 金属有机骨架结构复合材料

Abstract:

Objective The national policy of "carbon peaking and carbon neutral" aims to implement the concept of green and low carbon cycle development. This research aims to improve the social development efficiency through technological progress and governance optimization. This project proposes a green solution derived from porous biomass sources.
Method The highly porous loofah sponge as precursor, Co2+ as metal source and 2-methylimidazole as ligand were used to obtain loofah sponge/cobalt 2-methylimidazole(ZIF-67)composites by coordination self-assembly, and the composites were calcined at high temperature to obtain carbon fiber-based cobalt/carbon (LS-Co/C)composites. The structure and properties of the LS-Co/C composites was test and analyzed by scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, Raman spectroscopy, vibrating sample magnetometer.
Results ZIF-67 was loaded on the surface of the loofah sponge(Fig. 2), and the higher calcination temperature improved the conversion of Co2+ into better crystalline Co particles(Fig. 3). The thermal decomposition stability of the carbon component became progressively higher with increased calcination temperature(Fig. 4), and the graphitization of the carbon fraction in the sample was increased with increasing calcination temperature(Fig. 5). The magnetic properties test result showing that the increase in calcination temperature favors the enhancement of the saturation magnetization intensity and the degree of Co crystallization forming. The increase in calcination temperature increased the values of the real and imaginary parts of the dielectric constant of the sample, and too low Co content leads to a smaller variation of the magnetic permeability(Fig. 7). It was concluded that the dielectric loss capability in LS-Co/C composites mainly depended on the conductivity loss, dipole orientation polarization loss and interfacial polarization loss(Fig. 8). The main factor affecting the wave absorption performance of LS-Co/C composites depended on the dielectric loss capability of the samples(Fig. 9), and its absorbing property is excellent when carbonized at 800 ℃(Fig. 10).
Conclusion Using biomass source loofah sponge as the precursor and Co2+ as the metal source, a raw material was obtained by coordination assembly and then calcined at high temperature to obtain the carbon fiber-based cobalt/carbon composite. The electromagnetic wave absorbing performance test yielded that the maximum reflection loss of LS-Co/C(carbonized at 800 ℃) reached -21.5 dB at a thickness of 1.5 mm and a frequency of 14.8 GHz, the effective absorption bandwidth was 5.2 GHz (12.8-18.0 GHz), and the excellent absorbing performance of the composite material originated from the enhanced electromagnetic wave loss formed by the special three-dimensional porous network loss structure and multiple interface polarization capability. This experiment provides a new synthetic method for the development of green, lightweight and efficient porous magnetic carbon-based absorbing materials.

Key words: carbon fiber, cobalt/carbon composite, biomass, microwave absorption material, porous material, loofah sponge, metal-organic frameworks composite

中图分类号: 

  • TS101

图1

LS-Co/C复合材料制备流程图"

图2

丝瓜络/ZIF-67复合材料的SEM照片"

图3

LS-Co/C复合材料的XRD曲线"

图4

LS-Co/C复合材料热重曲线"

图5

LS-Co/C复合材料的拉曼光谱图"

图6

LS-Co/C复合材料的磁滞回线"

图7

LS-Co/C复合材料的介电常数与复磁导率图"

图8

LS-Co/C复合材料的介电损耗角正切值变化"

图9

LS-Co/C复合材料的磁损耗角正切值变化曲线"

图10

LS-Co/C复合材料的二维反射损耗图"

图11

LS-Co/C复合材料的阻抗匹配图"

图12

LS-Co/C复合材料的衰减因子曲线"

[1] WU Z, CHENG H W, JIN C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials, 2022.DOI: 10.1002/adma.202107538.
doi: 10.1002/adma.202107538
[2] WANG L, HUANG M, QIAN X, et al. Confined magnetic-dielectric balance boosted electromagnetic wave absorption[J]. Small, 2021.DOI: 10.1002/smll.202100970.
doi: 10.1002/smll.202100970
[3] CHENG J, ZHANG H, NING M, et al. Emerging materials and designs for low-and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy?[J]. Advanced Functional Materials, 2022.DOI:10.1002/adfm.202200123.
doi: 10.1002/adfm.202200123
[4] LIU W, SHAO Q, JI G, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal, 2017, 313:734-744.
doi: 10.1016/j.cej.2016.12.117
[5] LI Z J, HOU Z L, SONG W L, et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption[J]. Nanoscale, 2016, 8(19): 10415-10424.
doi: 10.1039/C6NR00223D
[6] QIANG R, DU Y, ZHAO H, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A, 2015, 3(25): 13426-13434.
doi: 10.1039/C5TA01457C
[7] QIANG R, DU Y, CHEN D, et al. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67)[J]. Journal of Alloys and Compounds, 2016, 681:384-393.
doi: 10.1016/j.jallcom.2016.04.225
[8] LIU D, QIANG R, DU Y, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2018, 514:10-20.
doi: S0021-9797(17)31403-0 pmid: 29227802
[9] MA W, HE P, XU J, et al. Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk-shell nanoboxes with enhanced microwave absorption[J]. Journal of Materials Chemistry A, 2022, 10(21): 11405-11413.
doi: 10.1039/D2TA01798A
[10] WU Z, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11108-11115.
[11] ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142:245-253.
doi: 10.1016/j.carbon.2018.10.027
[12] QIANG R, FENG S, CHEN Y, et al. Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 606:406-423.
doi: 10.1016/j.jcis.2021.07.144
[13] LIU P, GAO S, ZHANG G, et al. Hollow engineering to Co@N-Doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202102812.
doi: 10.1002/adfm.202102812
[14] DONG Y, ZHU X, PAN F, et al. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nano-sheets @3D porous carbon hybrids for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.131272.
doi: 10.1016/j.cej.2021.131272
[15] DONG Y, ZHU X, PAN F, et al. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption[J]. Carbon, 2022, 190:68-79.
doi: 10.1016/j.carbon.2022.01.008
[16] ZHANG X, DONG Y, PAN F, et al. Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high-performance microwave absorbers[J]. Carbon, 2021, 177:332-343.
doi: 10.1016/j.carbon.2021.02.092
[17] FANG X, LI W, CHEN X, et al. Controlling the microstructure of biomass-derived porous carbon to assemble structural absorber for broadening band-width[J]. Carbon, 2022, 198:70-79.
doi: 10.1016/j.carbon.2022.06.074
[1] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[2] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
[3] 付玮康, 郭筱洁, 潘孟涛, 宋聚滟, 奚柏君. 柳絮纤维生物质炭的制备及其对染料废液中Cr(Ⅵ)的吸附性能[J]. 纺织学报, 2022, 43(12): 8-15.
[4] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
[5] 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76.
[6] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
[7] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[8] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[9] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[10] 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170.
[11] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[12] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[13] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[14] 强荣, 冯帅博, 马茜, 陈博文, 陈熠. 钴/碳纤维复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(02): 30-36.
[15] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[3] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[4] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[5] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .