纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 76-82.doi: 10.13475/j.fzxb.20220707507

• 纺织工程 • 上一篇    下一篇

基于循环迭代法的牵伸区纤维运动仿真模拟

崔月敏1, 程隆棣1(), 和杉杉1, 吕金丹2, 崔益怀3   

  1. 1.东华大学 纺织学院, 上海 201620
    2.浙江纺织服装职业技术学院 纺织学院, 浙江 宁波 315211
    3.南通双弘纺织有限公司, 江苏 南通 226600
  • 收稿日期:2022-07-21 修回日期:2022-10-31 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 程隆棣(1959—),男,教授,博士。主要研究方向为纺织工艺与装备。E-mail:ldch@dhu.edu.cn。
  • 作者简介:崔月敏(1993—),女,博士生。主要研究方向为新型环锭纺纱技术。
  • 基金资助:
    上海市“科技创新行动计划”扬帆计划项目(21YF1401100);国家重点研发计划重点专项(2017YFB0309100);东华大学中央高校基本科研业务费专项资金自由探索项目(2232021D-09)

Simulation of fiber motion in drafting zone based on cyclic iterative method

CUI Yuemin1, CHENG Longdi1(), HE Shanshan1, LÜ Jindan2, CUI Yihuai3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Textiles, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang 315211, China
    3. Nantong Double Great Textile Co., Ltd., Nantong, Jiangsu 226600, China
  • Received:2022-07-21 Revised:2022-10-31 Published:2023-02-15 Online:2023-03-07

摘要:

为进一步研究牵伸区纤维的运动,基于单纤维在牵伸区内受到的引导力与控制力,采用循环迭代法建立纤维变速模型,计算牵伸区不同压力分布下不同长度纤维的变速点,并得到牵伸区内纤维变速点分布以及各位置不同纤维(包括快速纤维、慢速纤维以及浮游纤维)的分布。结果表明:纤维的变速点位置与其自身长度有关,纤维长度越长,其变速点越靠近前罗拉钳口;在不考虑浮游区情况下,对于长度离散度较大的纤维须条,牵伸区内平稳、缓和的压力分布有利于纤维变速点的集中,但纤维变速点离前钳口较远;纤维长度长、离散度较小时,靠近前钳口增加附加压力有利于变速点的集中且其更加靠近前钳口。

关键词: 纤维变速点, 循环迭代法, 仿真, 牵伸, 压力分布, 纤维运动模型

Abstract:

Objective The dispersion of fiber accelerated points during drafting is one of the main causes for yarn unevenness. Most of the previous studies are about accelerated point distributions of all fibers in a sliver, and there is a lack of research on the motion of single fibers. Therefore, based on the force of a single fiber in the drafting zone, a fiber motion model is established in this research, and the theoretical accelerated points of fibers under different pressure distributions are discussed, which may provide theoretical basis for process design in actual production.
Method Ignoring the difference of the pressure distribution in the transverse direction of a sliver, a drafting model, using software MatLab, was established according to the controlling force and guiding force of a single fiber in the drafting zone, and the position where the fiber is accelerated was determined. In the simulation, it is assumed that all fibers are accelerated at the front roller nip, and then the accelerated points of each fiber is calculated repeatedly by the iterative method, until the difference from the result of the last loop is less than a set error value.
Results The maximum absolute values of errors between the calculated results and the verification results in the opposite direction were all much smaller than the error value, which validates the model. The accelerated point of a fiber was related to its length(Fig. 7). The longer the fiber, the closer the fiber accelerated point is to the front roller nip. When the additional pressure was added close to the back roller, the accelerated point of the fiber with a length of less than 27 mm would move slightly backward compared to the case without the additional pressure. For a fiber longer than 27 mm, the accelerated point of the fiber moved rapidly towards the front roller nip as the length increases. As the position for adding additional pressure was moved forward, the accelerated points for shorter fibers also got closer to the front roller. When the additional pressure was added closer to the front roller, the theoretical accelerated points for fibers longer than 14 mm were all 0.5 mm away from the front roller. In the case of no additional pressure, although the average position of the fiber accelerated points was the farthest from the front roller, the coefficient of variation of the overall fiber accelerated points was the smallest at only 0.431%(Fig. 8). The front additional pressure was found beneficial for the fibers closer to the front roller, but due to the large difference in the accelerated points of short fibers and long fibers, the CV value was greater than that without the additional pressure. When fibers of slivers were longer with better uniformity, increasing the front additional pressure was revealed to be more conducive to the fiber accelerated points closer to the front roller and more concentrated. However, at this time the fiber dispersion was required to be higher to avoid defects such as "thick end" or breakage. With additional pressure added at the middle positions, fibers smaller than 27 mm have larger accelerated point changing rate with the increase of fiber length, and the dispersion of all fiber accelerated points was the largest compared with no additional and back additional pressure, although the average accelerated point is closer to the front roller.
Conclusion The position of the additional pressure in the drafting zone affects fiber accelerated points. Compared with increasing the additional pressure, the stable and gentle pressure distribution in the drafting zone is more conducive to the concentration of accelerated points, but the fiber accelerated points are farther from the front roller, which is more unstable in actual production. As the position of the additional pressure moves forward, the accelerated points of shorter fibers also move forward. Therefore, under the front additional pressure, the accelerated points of fibers are more concentrated and closer to the front roller, which is beneficial to reduce the unevenness of the sliver after drafted. The model established in this research could be used to predict sliver evenness after drafting, and to guide the adjustment of drafting parameters and optimization of the drafting mechanism in actual production. Due to the complexity of actual drafting process, this paper does not consider the difference of the pressure distribution in the transverse direction of a sliver and the cohesion between fibers. Therefore, there are certain gaps between the theoretical and the actual production results, and further research is needed in the future to fill the gaps.

Key words: fiber accelerated point, cyclic iterative method, simulation, drafting, pressure distribution, fiber motion model

中图分类号: 

  • TS104.1

图1

牵伸区内纤维运动状态"

图2

模拟牵伸过程流程图"

图3

附加压力位置不同的牵伸区压强分布曲线"

图4

散纤维长度数量分布"

图5

纤维长度概率密度分布"

图6

前、后罗拉纤维握持量"

图7

不同长度纤维变速点位置"

图8

牵伸区内变速点分布"

图9

牵伸区内各种纤维分布量"

图10

牵伸区内浮游纤维分布量"

[1] TAYLOR D S. The velocity of floating fibers during drafting of worsted slivers[J]. Journal of the Textile Institute Transactions, 1959, 50(2): 233-236.
[2] 李瑛慧, 谢春萍, 刘新金. 基于纤维变速点分布实验的成纱条干不匀研究[J]. 纺织学报, 2016, 37(8): 32-36,58.
LI Yinghui, XIE Chunping, LIU Xinjin. Study on yarn unevenness based on experiment of fibers accelerated-point distribution[J]. Journal of Textile Research, 2016, 37(8): 32-36,58.
[3] SHEN Y, NI J, YANG J, et al. Study on the testing of the accelerated point of the floating fiber in the roller drafting process with an improved method[J]. Textile Research Journal, 2021, 92(1/2): 168-179.
doi: 10.1177/00405175211030881
[4] SHEN Y, QIAN X, YU C. A study on the dynamic motion of floating fibers in the double apron drafting process[J]. Textile Research Journal, 2022, 92(13/14): 2476-2486.
doi: 10.1177/00405175221086046
[5] YOSHIDA K, KATO M. A study on the accelerated-point of floating fibers in drafting distribution pro-cesses[J]. Journal of the Textile Machinery Society of Japan, 1975, 21(4): 95-102.
doi: 10.4188/jte1955.21.95
[6] HUH Y, KIM J S. Modeling the dynamics behavior of the fiber bundle in a roll-drafting process[J]. Textile Research Journal, 2004, 74(10): 872-878.
doi: 10.1177/004051750407401006
[7] YAN G, YU C W. The influence of fiber length distribution on the accelerated points in drafting: a new perspective on drafting process[J]. Fiber Polymer, 2009, 10(2): 217-220.
[8] FUJINO K, KAWABATA S. Method of analyzing problems on drafting[J]. Journal of the Textile Machinery Society of Japan, 1962, 8: 12-21.
[9] MA B, WANG J. Study on the fiber distribution in a drafting zone[J]. Journal of The Textile Institute, 2016, 108: 1057-1064.
doi: 10.1080/00405000.2016.1219448
[10] 姚杰, 叶国铭, 陈人哲. 牵伸区浮游纤维变速的数学建模与仿真[J]. 东华大学学报(自然科学版), 2006, 32(4): 1-5.
YAO Jie, YE Guoming, CHEN Renzhe. Modeling and simulating the motion of floating fibers during drafting[J]. Journal of Donghua University (Natural Science), 2006, 32(4): 1-5.
[11] 苏玉恒, 陈莉娜. 基于纤维长度分布的浮游纤维变速仿真[J]. 纺织学报, 2010, 31(4): 39-44.
SU Yuheng, CHEN Lina. Simulation on accelerating of floating fibers based on distribution of fiber length[J]. Journal of Textile Research, 2010, 31(4): 39-44.
[12] SUN N, LIU M. Study on the accelerated-point distribution of floating fibers in the drafting zone[J]. Textile Research Journal, 2022, 92(17/18):3193-3203.
doi: 10.1177/00405175211059204
[13] 唐文辉, 朱鹏. 现代棉纺牵伸的理论与实践[M]. 北京: 中国纺织出版社, 2012:15-18.
TANG Wenhui, ZHU Peng. The Theory and practice of modern cotton spinning[M]. Beijing: China Textile & Apparel Press, 2012:15-18.
[14] 陆惠文, 倪远. “陆S纺纱工艺”的细纱牵伸机理初探[J]. 辽东学院学报(自然科学版), 2016, 23(2): 77-87.
LU Huiwen, NI Yuan. Yarn drafting mechanism of 6S spinning technology[J]. Journal of Eastern Liaoning University(Natural Science), 2016, 23(2): 77-87.
[1] 赖安琪, 蒋高明, 李炳贤. 全成形毛衫花式结构三维仿真[J]. 纺织学报, 2023, 44(02): 103-110.
[2] 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68.
[3] 李豪, 曹巧丽, 李佳蔚, 韩振宁, 郁崇文. 并条混合仿真与控制系统设计[J]. 纺织学报, 2022, 43(12): 48-53.
[4] 陈钰珊, 蒋高明, 李炳贤. 纬编绕经织物设计与三维仿真[J]. 纺织学报, 2022, 43(12): 62-68.
[5] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[6] 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(08): 1-6.
[7] 郭明瑞, 高卫东. 两通道环锭纺单区牵伸纺制段彩竹节纱的方法及其特点[J]. 纺织学报, 2022, 43(08): 21-26.
[8] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[9] 董智佳, 孙菲, 丛洪莲, 俞旭良. 低损耗纬编成形女士背心的结构设计与建模[J]. 纺织学报, 2022, 43(07): 129-134.
[10] 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170.
[11] 汝欣, 朱婉珍, 史伟民, 彭来湖. 密度非均匀分布纬编针织物的变形预测及仿真[J]. 纺织学报, 2022, 43(06): 63-69.
[12] 肖琪, 王瑞, 张淑洁, 孙红玉, 王静茹. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(06): 70-78.
[13] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[14] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[15] 纪杰, 韩云龙, 高杰, 汪虎明, 陆彪. 纺纱车间空调系统数学建模及动态仿真[J]. 纺织学报, 2022, 43(03): 176-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[2] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[6] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[7] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[8] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[9] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .
[10] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .