纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 83-89.doi: 10.13475/j.fzxb.20220806907

• 纺织工程 • 上一篇    下一篇

转轮集聚纺纱装置与工艺设计

张青青1, 倪远2, 汪军1(), 张玉泽1, 江慧1   

  1. 1.东华大学 纺织学院, 上海 201620
    2.纺之远(上海)纺织工作室, 上海 200063
  • 收稿日期:2022-08-17 修回日期:2022-11-07 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 汪军(1973—),男,教授,博士。主要研究方向为新型纺纱技术。E-mail:junwang@dhu.edu.cn。
  • 作者简介:张青青(1998—),女,硕士生。主要研究方向为集聚纺纺纱技术。
  • 基金资助:
    上海市现代纺织前沿科学研究基地资助项目(X11012102-004)

Process design of spinning device based on runner fiber accumulation

ZHANG Qingqing1, NI Yuan2, WANG Jun1(), ZHANG Yuze1, JIANG Hui1   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Sincerity(Shanghai) Textile Studio, Shanghai 200063, China
  • Received:2022-08-17 Revised:2022-11-07 Published:2023-02-15 Online:2023-03-07

摘要:

针对目前负压式集聚纺能耗大的问题,设计了转轮集聚纺纱装置。选用粗纱定量为6.33 g/(10 m)的普梳棉粗纱为原料,采用转轮集聚纺纱装置与传统环锭纺,设计纺纱线密度分别为32.4、24.3、19.4 tex纺制纱线,并对其单纱线密度、断裂强度、毛羽、条干均匀度和捻度进行测试对比,客观评价该转轮集聚纺纱装置的应用效果。结果表明:与环锭纱相比,转轮集聚纱4 mm以上有害毛羽减少量达40%~80%,单纱断裂强度下降1%~3%,断裂强力不匀率下降25%~50%,24.3和19.4 tex的单纱条干均匀度有3%~6%的轻微恶化,捻度基本无影响,说明使用转轮集聚纺纱装置可显著减少纱线的有害毛羽;转轮集聚纺纱装置安装在前罗拉下方,可在环锭细纱机上快速安装与拆卸,实现传统环锭纺与集聚纺的便捷切换,同时该装置具有构造简单、能耗低等优点。

关键词: 集聚纺, 转轮集聚纺纱装置, 棉纱, 毛羽测试, 断裂强度, 条干均匀度

Abstract:

Objective At present, most spinning mills use negative pressure concentrated spinning. However, this spinning method relates to high the spinning cost due to high energy consumption. Thus a runner accumulating device was designed which does not depend on the use air pressure energy for yarn spinning. Specific experimental tasks in the research include spinning experiments by the device and yarn performance evaluation. The research is to be carried out to reduce yarn hairiness reduction, and it is envisaged that the high quality yarn production will reduce the reliance on negative pressure spinning.
Method Carded cotton roving was used as raw material to make yarns of 32.4, 24.3, and 19.4 tex. Spinning experiment included producing original yarn by traditional spinning machine and runner yarn by rotary transformation of ring spinning. These experiments were operated in spinning experiment machine DHU-X01. Two types of single yarn performance experiments were completed under the conditions of temperature about (20±2) ℃ and humidity of about (65±3)%, on hairiness testing, single yarn strength, yarn evenness, twist and 100 m weight test. The experiment required data analysis and collation to make comparison of two single yarn properties to verify the feasibility of the device.
Results The accumulating device has a good hair reduction effect on the 32.4, 24.3 and 19.4 tex cotton single yarns, with hairiness reduction effect above 4 mm. However, the strength of the runner yarn is weaker than the original yarn, and the breaking strength was decreased by approximately 1%-3%. This may be because of the lack of proper tension stretching between the front jaws and the runner jaws as the rotary wheel is driven by the front roller, causing low orientation of fibers in the yarn. When yarns were stretched by external forces, fiber utilization was reduced and yarn strength decrease, leading to slight worsening of yarn evenness. Experiment also showed that after the whiskers left the front jaws, they were not subjected to stable control immediately, causing increased CV value on yarn evenness. The twist test results show that runner device has no influence on yarn twist. 100 m weight was measured by yarn length gauge to investigate the difference in actual linear density. Compared with the experimental data, 100 m weight of runner yarn is 3% lighter than original yarn. There were two reasons for this phenomenon. On the one hand, the runner device moved the twist point forward to the place closer to the pipette and sucked air away together with some fiber. On the other hand, the device's clamping force between the two wheels was small and the wheel caused more friction on the whiskers, causing some fiber lost. Two experiments were carried out to analyze and verify the reasons. Through the data analysis, it is concluded that the friction between the runner and the fibers is the main reason for the decrease of 100 g weight. Subsequent experiments will solve this problem by increasing the clamping force of the runner.
Conclusion In summary, runner device has a noted improvement on cotton yarn hairiness reduction, and the spinning cost of the device is lower than that of the negative pressure compact spinning. Though runner yarn strength and yarn evenness are not as good as the original yarn, the deterioration of indicators is quite small within a reasonable range and it basically does not affect the use of single yarn. If the rotor wheel size is further reduced, for which the runner accumulating device is closer to the front jaw, it is expected to better results could be achieved. For producing yarns in a certain fineness range, it is promising that the low-cost runner accumulating device could replace RoCoS and negative pressure compact devices.

Key words: compact spinning, runner accumulating device, cotton yarn, hairiness test, breaking strength, yarn evenness

中图分类号: 

  • TS111.8

图1

转轮集聚纺纱装置设计图"

图2

转轮集聚纺纱装置示意图"

图3

转轮集聚纺纱装置工作图"

图4

转轮集聚纺纱装置效果图"

表1

3种线密度棉纱工艺设计参数"

设计单纱线
密度/tex
锭速/
(r·min-1)
总牵伸
倍数
捻度/
(捻·m-1)
32.4 6 000 19.8 630
24.3 6 907 26.4 727
19.4 7 725 33.0 814

表2

实际线密度测试结果"

设定线密度 原纱实际线密度 转轮纱实际线密度
32.4 34.5 33.5
24.3 24.9 24.1
19.4 19.7 19.1

表3

不同实验条件下线密度测试结果"

测试
次数
线密度/tex
关吸风无转轮 关吸风有转轮 开吸风有转轮
1 34.5 34.0 33.7
2 35.6 34.2 34.0
3 34.4 33.7 33.5
平均值 34.8 34.0 33.7

表4

力学性能测试结果"

试样 断裂强力/
cN
断裂强力
CV值/%
断裂强度/
(cN·tex-1)
断裂伸长/
mm
断裂功/
(cN·mm)
断裂时间/
s
32.4 tex原纱 607.50 7.24 17.61 27.51 8 511.20 3.30
32.4 tex转轮纱 583.20 5.47 17.41 29.56 8 555.93 3.55
24.3 tex原纱 468.15 7.83 18.80 32.20 7 261.00 3.86
24.3 tex转轮纱 439.50 4.06 18.24 29.67 6 247.68 3.56
19.4 tex原纱 354.35 5.55 17.99 23.12 4 575.82 2.77
19.4 tex转轮纱 337.25 3.86 17.66 23.93 4 368.47 2.87

图5

单纱表面结构扫描电镜照片 (×150)"

表5

不同长度毛羽变化百分比"

试样线密
度/tex
变化百分比/%
1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm 8 mm 9 mm
32.4 27.40 25.00 9.80 5.10 -3.00 -38.50 -68.75 -62.50 -60.00
24.3 16.60 11.10 -5.60 -25.00 -34.00 -29.40 -14.30 -80.00 -50.00
19.4 18.00 24.30 24.60 12.20 -18.90 -46.20 -85.70 -50.00 0.00

图6

安装转轮纺纱段纱线路径图 注:弧AB为原纱包围弧;弧AC为转轮纱包围弧; 灰色矩形代表转轮侧视图。"

表6

捻度测试结果"

试样 捻度/
(捻·m-1)
试样 捻度/
(捻·m-1)
32.4 tex原纱 674.02 32.4 tex转轮纱 677.97
24.3 tex原纱 708.92 24.3 tex转轮纱 710.21
19.4 tex原纱 800.19 19.4 tex转轮纱 805.76

表7

条干均匀度测试结果"

试样 条干CV
值/%
细节(-40%)/
(个·km-1)
细节(-50%)/
(个·km-1)
粗节(+35%)/
(个·km-1)
粗节(+50%)/
(个·km-1)
棉结(+200%)/
(粒·km-1)
32.4 tex原纱 10.33 20 0 50 0 10
32.4 tex转轮纱 10.31 18 0 40 0 0
24.3 tex原纱 10.99 10 0 85 5 10
24.3 tex转轮纱 11.63 20 10 110 20 15
19.4 tex原纱 12.26 45 0 235 15 35
19.4 tex转轮纱 12.69 65 10 225 20 25
[1] 贺伟娜, 权延娟, 詹树改. 绪森倚丽特集聚纺装置的应用效果分析[J]. 棉纺织技术, 2018, 46(8): 55-58.
HE Weina, QUAN Yanjuan, ZHAN Shugai. Analysis of the application effect of the suessen elite compact spinning device[J]. Cotton Textile Technology, 2018, 46(8): 55-58.
[2] 严瑛, 董爱仙. 环锭纺与RoCoS紧密纺的对比分析[J]. 现代纺织技术, 2014, 22(3): 29-31.
YAN Ying, DONG Aixian. Comparative analysis of ring spinning and rocos compact spinning[J]. Advanced Textile Technology, 2014, 22(3): 29-31.
[3] STEFAN Urmetze, 倪远. 捷丽纺装置:满足集聚需求的全新机械集聚解决方案[J]. 纺织器材, 2022, 49(3): 62-64.
STEFAN Urmetze, NI Yuan. Jieli spinning device: a new mechanical agglomeration solution to meet agglomeration needs[J]. Textile Accessories, 2022, 49(3): 62-64.
[4] 钱成, 刘燕卿, 刘新金, 等. 全聚纺与四罗拉网格圈紧密纺集聚区三维流场模拟与对比分析[J]. 丝绸, 2020, 57(7): 50-54.
QIAN Cheng, LIU Yanqing, LIU Xinjin, et al. Three-dimensional flow field simulation and comparative analysis of all-polyspinning and four-roller mesh circle tight spinning agglomeration area[J]. Journal of Silk, 2020, 57(7): 50-54.
[5] 郝可可, 张玉泽, 汪军, 等. 脉动集聚纺装置特点与成纱质量分析[J]. 上海纺织科技, 2021, 49(4): 49-51.
HAO Keke, ZHANG Yuze, WANG Jun, et al. Characteristics and yarn quality analysis of pulsating agglomeration spinning device[J]. Shanghai Textile Science & Technology, 2021, 49(4): 49-51.
[6] 程登木. 聚纤纺牵伸系统的研究与实践[J]. 纺织学报, 2013, 34(6): 142-146.
CHENG Dengmu. Research and practice of polyfiber spinning draft system[J]. Journal of Textile Research, 2013, 34(6): 142-146.
[7] 倪远. 环锭集聚纺纱技术的发展[J]. 纺织导报, 2011(6): 35-36.
NI Yuan. Development of ring spinning technology[J]. China Textile Leader, 2011(6): 35-36.
[8] 袁祖纯. 基于优化三角区的纺纱方法的研究与实践[D]. 武汉: 武汉纺织大学, 2016: 1-4.
YUAN Zuchun. Research and practice of spinning method based on optimized triangle area[D]. Wuhan: Wuhan Textile University, 2016: 1-4.
[9] 贠秋霞, 杨雯静. 集聚纺纱技术的应用浅析[J]. 棉纺织技术, 2016, 44(2): 80-84.
YUN Qiuxia, YANG Wenjing. Analysis on the application of agglomeration spinning technology[J]. Cotton Textile Technology, 2016, 44(2): 80-84.
[10] 白洋, 孔聪. 不同形式紧密纺系统对比[J]. 上海纺织科技, 2014, 42(7): 6-10.
BAI Yang, KONG Cong. Comparison of different compact spinning systems[J]. Shanghai Textile Science & Technology, 2014, 42(7): 6-10.
[11] 傅培花. 集聚纺纱的凝聚机理和成纱结构性能的研究[D]. 上海: 东华大学, 2005: 37-38.
FU Peihua. Research on the agglomeration mechanism of agglomerated spinning and the structural properties of the yarn[D]. Shanghai: Donghua University, 2005: 37-38.
[12] 薛少林, 周秀玲, 马文祥, 等. 单纱强力CV%值的试验研究[J]. 棉纺织技术, 2000, 28(3): 10-13.
XUE Shaolin, ZHOU Xiuling, MA Wenxiang, et al. Experimental research on CV% value of single yarn strength[J]. Cotton Textile Technology, 2000, 28(3): 10-13.
[13] 姜展. 纱条中纤维排列的模拟及其对成纱质量的影响[D]. 上海: 东华大学, 2017: 6-8.
JIANG Zhan. Simulation of fiber arrangement in yarn sliver and its influence on yarn quality[D]. Shanghai: Donghua University, 2017: 6-8.
[14] 钱祥煦, 朱红青. 加捻三角区形态与纺纱毛羽[J]. 棉纺织技术, 2009, 37(10): 1-4.
QIAN Xiangxu, ZHU Hongqing. Twisting triangle shape and spinning hairiness[J]. Cotton Textile Technology, 2009, 37(10): 1-4.
[15] 薛元, 曹艳. 环锭纺加捻三角区纤维转移机理及其运动规律分析[J]. 纺织学报, 2005, 26(5): 31-33.
XUE Yuan, CAO Yan. Analysis of fiber transfer mechanism and motion law in twisting triangle area of ring spinning[J]. Journal of Textile Research, 2005, 26(5): 31-33.
[16] FENG Jie, XU Bingang, TAO Xiaoming, et al. Theoretical study of a spinning triangle with its application in a modified ring spinning system[J]. Textile Research Journal, 2010, 80(14): 1456-1464.
doi: 10.1177/0040517510361803
[17] 余豪, 张建建, 刘可帅, 等. 导纱钩运动引起的纺纱三角区变化对成纱性能的影响[J]. 纺织学报, 2016, 37(10): 19-25.
YU Hao, ZHANG Jianjian, LIU Keshuai, et al. Influence of spinning triangle changes caused by yarn guide hook movement on yarn properties[J]. Journal of Textile Research, 2016, 37(10): 19-25.
[18] 武建周, 李世平. 紧密纺纱线条干不匀的研究以及管理措施[J]. 轻纺工业与技术, 2017, 46(6): 7-10.
WU Jianzhou, LI Shiping. Research on unevenness of compact spinning yarn and management measures[J]. Textile Industry and Technology, 2017, 46(6): 7-10.
[1] 吕金丹, 程隆棣. 凹槽形状对气流槽聚纺纱集聚区流场及成纱性能的影响[J]. 纺织学报, 2023, 44(01): 188-193.
[2] 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63.
[3] 余鹏举, 王黎黎, 张文奇, 刘洋, 李文斌. 回潮率对石英纤维纱织造前后力学性能的影响[J]. 纺织学报, 2022, 43(05): 92-96.
[4] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[5] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[6] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
[7] 李瑞卿, 王伟, 魏炳举, 周长文, 张淑桃. 应用环保型还原剂的硫化黑染色工艺[J]. 纺织学报, 2020, 41(08): 50-54.
[8] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
[9] 钱成, 刘燕卿, 刘新金, 谢春萍, 苏旭中. 四罗拉集聚纺纱系统纤维运动数值模拟与分析[J]. 纺织学报, 2020, 41(03): 39-44.
[10] 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19.
[11] 钱成, 刘燕卿, 刘新金, 谢春萍, 徐伯俊. 四罗拉集聚纺纱系统三维流场模拟与分析[J]. 纺织学报, 2019, 40(10): 56-61.
[12] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[13] 傅婷, 张玉泽, 王姜, 陈南梁. 集聚纱的分层结构与集聚机制[J]. 纺织学报, 2019, 40(02): 53-57.
[14] 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(01): 52-56.
[15] 郭淑华 王建坤 钱晓明. 微波辅助羧甲基玉米淀粉的制备及其上浆性能[J]. 纺织学报, 2018, 39(12): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .