纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 90-95.doi: 10.13475/j.fzxb.20220805806

• 纺织工程 • 上一篇    下一篇

纤维基湿敏柔性驱动器的跨尺度构建及其性能

彭阳阳1, 盛楠1, 孙丰鑫1,2()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.江南大学 纤维软材料实验室, 江苏 无锡 214122
  • 收稿日期:2022-08-16 修回日期:2022-11-01 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 孙丰鑫(1989—),男,副研究员,博士。主要研究方向为纺织结构力学与智能纺织品。E-mail: fxsun@jiangnan.edu.cn。
  • 作者简介:彭阳阳(1998—),女,硕士。主要研究方向为智能纺织品。
  • 基金资助:
    国家自然科学基金项目(11802104)

Scalable construction and performance of fiber-based flexible moisture-responsive actuators

PENG Yangyang1, SHENG Nan1, SUN Fengxin1,2()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-08-16 Revised:2022-11-01 Published:2023-02-15 Online:2023-03-07

摘要:

针对目前纤维基人工肌肉普遍存在变形模式单一(主要为一维扭转和伸缩)、刺激条件苛刻、潜在的化学毒性或制造工艺复杂等问题,提出基于纤维聚集态结构及纤维体分级结构的跨尺度处理策略。通过结构设计将普通粘胶纤维制成快速响应、湿驱动的纱线人工肌肉,进一步通过集成不同的纺织技术与拓扑编织结构设计,实现纱线人工肌肉的机械化生产,并将一维纱线肌肉进一步扩展为二维的织物肌肉驱动器。结果表明:所制备的纱线人工肌肉实现了高达1 657 (°)/cm的扭转冲程,所制备的织物肌肉实现了更高维度的螺旋、卷曲、弯曲和扭转等运动。该制备方法无需任何复合系统、复杂的合成加工和组件设计,有利于促进纤维基人工肌肉在智能纺织品等多领域的应用与发展。

关键词: 人工肌肉, 驱动器, 湿响应材料, 粘胶纤维, 智能纺织品, 织物肌肉

Abstract:

Objective Smart textiles with thermal and humidity management function have attracted great interest from material researchers. Recently, the development of fiber-based artificial muscles based on fibrous twisting structure has provided new ways and effective methods for new development of the smart textiles. Fiber-based artificial muscles show sensitive and rapid actuating response to external stimuli based on the mechanism of anisotropic volume expansion. The current research aims to show that man-made fibers (e.g., carbon nanotubes, graphene, and shape memory alloys) and natural fibers (such as silk, spider silk, and cotton) can be used to prepare twisted fiber-based glexible actuators. However, the current fiber-based artificial muscles generally suffer from high cost, harsh stimulation conditions, chemical toxicity or complex manufacturing processes, which hinder the wide applications of fiber-based artificial muscles. Therefore, it is necessary to develop fiber-based artificial muscles with mild and moisture-response, high actuating response, stable actuating performance and low cost based on the use of environment-friendly fiber materials to promote the applications of the yarn muscles as a type of smart textiles.
Method A cross-scale processing strategy was harnessed to process viscose fibers into high-performance artificial yarn muscles. With the help of nano-micro structure regulation of fiber and the inherent multi-hierarchical structure designability, scalability, softness and mechanical robustness of textiles, the bottom-up textile configuration technology and stress engineering methods were used to develop a moisture-responsive artificial yarn muscle actuator with rapid response and large actuating strain. Furthermore, through the topological weaving/knitting configuration, the one-dimensional deformation of the yarn actuator was expected to extend to a fabric actuator with sizable dimension and multiple deformations. A large-scale processing method was to be identified for the formation of yarn and fabric actuators, so as to facilitate the design and development of smart textiles with moisture-response.
Results When alternatively exposed to dry and wet conditions, the artificial yarn muscles were found to be able to produce reversible torsional rotation. By applying water fog of 0.05 g/s to actuate the artificial muscles, the muscles demonstrated encouraging actuating performance. The maximum rotation degree of the hot-drawn artificial yarn muscles reached 1 657 (°)/cm, which is 1.7 times higher than that of the artificial yarn muscles prepared from the original viscose fibers without hot-drawn treatments, with an average speed of 331 r/min, exceeding the original viscose artificial yarn muscle (254 r/min). Through the integration of spinning technology and topological textile design, the mechanized production of artificial yarn muscles was achieved, and the fabric artificial muscle actuators were developed and fabricated, extending the simple deformation of the one-dimensional artificial yarn muscles to the high-dimensional diversified deformation in two-dimensional fabric artificial muscles.
Conclusion This paper proposes a cross-scale design strategy from micro structure (fiber aggregated structure) to macro configuration (fiber-yarn-fabric structure) to prepare moisture-responsive fiber-based artificial muscles with high actuating strain. The actuating performance of the artificial muscles is characterized and the application field and deformation dimension of fiber-based artificial muscle actuator are expanded through textile processing technology. The findings from this study provide a new method for improving the performance of fiber-based artificial muscles, and are also conducive to promote the development and application of fiber-based artificial muscles in smart textiles and related fields.

Key words: artificial muscle, actuator, moisture-responsive material, viscose fiber, smart textile, fabric muscle

中图分类号: 

  • TS106.4

图1

双螺旋纱线人工肌肉的制备过程"

图2

基于纺纱技术的纤维基人工肌肉的规模化纺制技术"

图3

双螺旋自平衡粘胶纱线人工肌肉扫描电镜照片"

图4

干态与湿态下的纤维纵截面扫描电镜照片"

图5

原粘胶和热牵伸粘胶纱线肌肉的扭转角度与时间的关系"

表1

粘胶纱线肌肉的初始扭转速度、平均扭转速度和最大扭转角度的定量比较"

试样名称 初始扭转速度/
(r·min-1)
平均扭转速度/
(r·min-1)
最大扭转角度/
((°)·cm-1)
原纱线肌肉 129 254 978
热牵伸纱线肌肉 196 331 1 657

图6

20个循环周期中人工肌肉在干和湿状态下的扭转角度变化"

图7

热牵伸前后粘胶纤维的应力-应变曲线"

图8

加湿和放湿的平均扭转速度与加湿水雾量间的关系"

图9

不同相对湿度下粘胶纤维的相对含水率随时间的变化"

图10

湿敏织物人工肌肉在智能纺织品中的应用"

[1] 黄鹤, 于伟东, 严灏景. 自适应纺织品的类别及其制品[J]. 纺织学报, 2007, 28(12): 135-140.
HUANG He, YU Weidong, YAN Haojing. Categories of adaptive textiles and their products[J]. Journal of Textile Research, 2007, 28(12): 135-140.
[2] HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700895.
doi: 10.1126/sciadv.1700895
[3] ZHONG Y, ZHANG F, WANG M, et al. Reversible humidity sensitive clothing for personal thermoregula-tion[J]. Scientific Reports, 2017, 7(1): 1-8.
doi: 10.1038/s41598-016-0028-x
[4] LIMA M D, LI N, JUNG D A M, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles[J]. Science, 2012, 338(6109): 928-932.
doi: 10.1126/science.1226762 pmid: 23161994
[5] GONG J, LIN H, DUNLOP J W, et al. Hierarchically arranged helical fiber actuators derived from commercial cloth[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201605103.
doi: 10.1002/adma.201605103
[6] MIRVAKILI S M, HUNTER I W. Artificial muscles: mechanisms, applications, and challenges[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201704407.
doi: 10.1002/adma.201704407
[7] HAINES C S, LIMA M D, LI N, et al. Artificial muscles from fishing line and sewing thread[J]. Science, 2014, 343(6173): 868-872.
doi: 10.1126/science.1246906 pmid: 24558156
[8] MU J, JUNG D A M, FANG S, et al. Sheath-run artificial muscles[J]. Science, 2019, 365(6449): 150-155.
doi: 10.1126/science.aaw2403 pmid: 31296765
[9] LIU D, TARAKANOVA A, HSU C C, et al. Spider dragline silk as torsional actuator driven by humi-dity[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aau9183.
doi: 10.1126/sciadv.aau9183
[10] JIA T, WANG Y, DOU Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201808241.
doi: 10.1002/adfm.201808241
[11] HU J, MENG H, LI G, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures, 2012. DOI: 10.1088/0964-1726/21/5/053001.
doi: 10.1088/0964-1726/21/5/053001
[12] KONCAR V. Introduction to smart textiles and their applications[M]. Britain: Woodhead Publishing, 2016: 1-8.
[13] WANG J, GAO D, LEE P S. Recent progress in artificial muscles for interactive soft robotics[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202003088.
doi: 10.1002/adma.202003088
[14] LI Y, MIAO M H. Water-responsive artificial muscles from commercial viscose fibers without chemical treatment[J]. Materials Research Letters, 2020, 8(6): 232-238.
doi: 10.1080/21663831.2020.1743787
[1] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[2] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[3] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[4] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[5] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[6] 马训鸣, 李峙毅, 吕广雷, 陈勇洁. 新型夹纱器压电驱动器的运动特性[J]. 纺织学报, 2022, 43(08): 176-182.
[7] 熊永辉, 王冬, 杜长森, 付少海. 二硫代焦磷酸酯水性分散体系的制备及其在阻燃粘胶纤维中的应用[J]. 纺织学报, 2022, 43(07): 22-28.
[8] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[9] 刘锁, 王雅倩, 魏安方, 赵磊, 凤权. 功能化水刺粘胶纤维膜的制备及其在漆酶固定化中的应用[J]. 纺织学报, 2022, 43(05): 124-129.
[10] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[11] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[12] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[13] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10): 8-14.
[14] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
[15] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .