纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 1-10.doi: 10.13475/j.fzxb.20211005610

• 纤维材料 •    下一篇

聚酰胺6基弹性纤维的制备及其结构与性能

杨汉彬1, 张圣明1, 吴宇豪1, 王朝生1, 王华平1, 吉鹏2,3(), 杨建平1, 张体健4   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
    3.东华大学 产业用纺织品教育部工程研究中心, 上海 201620
    4.浪莎针织有限公司, 浙江 金华 322000
  • 收稿日期:2021-10-26 修回日期:2022-05-17 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 吉鹏(1988—),男,副研究员,博士。主要研究方向为纤维材料设计与成形加工。E-mail:jipeng@dhu.edu.cn
  • 作者简介:杨汉彬(1997—),男,硕士生。主要研究方向为聚酰胺聚合及成形加工。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232021G-06)

Preparation of polyamide 6-based elastic fibers and its structure and properties

YANG Hanbin1, ZHANG Shengming1, WU Yuhao1, WANG Chaosheng1, WANG Huaping1, JI Peng2,3(), YANG Jianping1, ZHANG Tijian4   

  1. 1. College of Material Science and Engineering, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    3. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
    4. Langsha Knitting Co., Ltd., Jinhua, Zhejiang 322000, China
  • Received:2021-10-26 Revised:2022-05-17 Published:2023-03-15 Online:2023-04-14

摘要:

针对传统二元酸法制备聚酰胺6(PA6)基弹性体时不能灵活调整软硬段比例的问题,引入乙二醇辅助聚乙二醇(PEG)满足化学计量数平衡,以灵活调控PEG占比进行嵌段共聚。通过控制己内酰胺、己二酸和PEG的配比和相对分子质量制备不同软硬段比例与长度的PA6基弹性体,进一步对可纺性良好的弹性体进行熔融纺丝制备得到PA6基弹性纤维。探究了PA6基弹性体及纤维的热性能、晶型结构、力学性能和弹性性能与链结构之间的关系。结果表明:PA6基弹性体的晶型结构由PA6链段主导,随着PEG链段含量的增多,纤维的弹性回复率增大,但断裂强度与断裂伸长率下降;与PA6纤维相比,含有超过20%PEG的弹性纤维在定伸长超过10%的阶段中表现出更高的回弹性,弹性回复率提升最大达17.5%;系列PA6基弹性纤维中综合性能最优样品断裂强度达1.57 cN/dtex,断裂伸长率为106.89%,10%定伸长弹性回复率达94.3%。

关键词: 聚酰胺6基弹性体, 聚乙二醇, 二元酸法, 嵌段共聚, 弹性纤维

Abstract:

Objective The binary acid method can be used for preparing polyamide 6 (PA6) based elastomer easily and efficiently, but stoichiometric number balance is strictly required when feeding. Once the molecular mass of the soft and hard segments is determined, the proportion of the soft and hard segments cannot be changed, which limits the development of functional products.The paper is to propose a new polymerization method based on the binary acid method to flexibly adjust the relative molecular weight and proportion of the soft and hard segments of PA6-based elastomers and to provide the basis for the subsequent research of PA6-based elastomers.

Method On the basis of the binary acid method, ethylene glycol is introduced to participate in the esterification and ester exchange reaction between polyamide 6 and polyether segments. With the ethylene glycol component, the system can ensure the balance of stoichiometry and adjust the ratio of soft and hard segments more flexibly to obtain the PA6-based elastomer. All reactions for preparing the PA6-based elastomer were performed in a 10 L reactor with a vacuum pump, a vacuum tube, and a nitrogen cyllinder.

Results It can be seen from the infrared spectra of the polymer that there are ester bonds in the product, indicating that ethylene glycol and polyethylene glycol were introduced into the system in the form of copolymerization (Fig.3). The structure of PA6 based elastomer (Fig.4), and combined with the peak (Fig.5), six bonding structures of PA6-based elastomer were made known. The relative integral area of the peak was introduced into equations (5) and (6), and it was proved that the molecular mass and PEG segment content were consistent with the design. The contents of low molecular extractants in PA6 based elastomer (Tab.4). The low content of low molecular extractants was conducive to the subsequent melt spinning of PA6-based elastomer. When the molecular weight of the soft and hard segments was given, the crystallization enthalpy and melting enthalpy of PEG segments would increase with the increase of the content of PEG segments, and the crystallization enthalpy and melting enthalpy of PA6 segments would decrease accordingly (Fig.7). With the same content of soft and hard segments, when the molecular mass ratio of hard segment to soft segment (Mn,PA6/Mn,PEG) increases, the melting and crystallization temperatures of PA6 and PEG segments would increase (Fig.8). It can be seen that the smaller the PEG content, the greater Mn,PA6/Mn,PEG, the higher the thermal stability of the resulting elastomer (Tab.5). It can be seen that the characteristic peaks of PA6 based elastomers were consistent with those of PA6, indicating that the crystal structure of this series of PA6-based elastomers was solely determined by PA6 chain segments(Fig.9). It can be seen that the elasticity of PA6 based elastic fibers increases with the increase of the PEG segment content, while the fracture strength and fracture elongation of fibers decrease sharply (Fig.10). It is evident that with the decrease of PEG segment content and the increase of Mn,PA6/Mn,PEG, the main chain structure of PA6 based elastic fiber is similar to that of pure PA6, and the fracture strength and elongation of the fiber increase (Tab.6).

Conclusion After the introduction of ethylene glycol, a series of PA6-based elastomers were prepared by changing the molecular weight and feeding ratio of polyethylene glycol (PEG) to PA6, making PA6-based elastomers more designable. The molecular structure design of a series of PA6-based elastomers was verified to be effective through the analysis of 1H-NMR and infrared spectra. The thermodynamic properties, the crystal structure, the fiber mechanical properties and the elastic properties of the series of PA6-based elastomer samples were tested and analyzed. The results show that the crystal structure of PA6-based elastomer is dominated by PA6 segments. With the increase of the PEG segment content, the elastic recovery of fiber increased, and the strength and elongation of fiber decreased. Compared with PA6 fibers, elastic fibers with above 20% PEG content shows higher resilience at high constant elongation (≥10%), the elastic recovery rate are increased by up to 17.5%. PA6-based elastic fiber is found to possess encouraging comprehensive properties, among which the strength is 1.57 cN/dtex, the elongation is 106.89%, and the elastic recovery at 10% constant elongation is 94.3%.

Key words: polyamide 6-based elastomer, polyethylene glycol, diprotic acid method, block copolymerization, elastic fiber

中图分类号: 

  • TS102.6

图1

10 L聚合实验装置示意图"

图2

聚酰胺6基弹性体的反应路线"

表1

聚酰胺6基弹性体的原料配比"

样品名称 n C P L : n A A Mn,PEG/(g·mol-1) m P A 6 : m P E G
10PA1k 8:1
9PA1k-PEG2k 8:1 2 000 9:1
8PA1k-PEG2k 8:1 2 000 8:2
7PA1k-PEG2k 8:1 2 000 7:3
6PA1k-PEG2k 8:1 2 000 6:4
9PA2k-PEG1k 16:1 1 000 9:1
9PA2k-PEG2k 16:1 2 000 9:1
7PA2k-PEG2k 16:1 2 000 7:3
5PA2k-PEG2k 16:1 2 000 5:5

表2

聚酰胺6基弹性纤维纺丝及热牵伸工艺参数"

螺杆温度/℃ 纺丝组件温度/℃ 计量泵 牵伸温度/℃
1区 2区 3区 4区 温度/℃ 压力/MPa 热辊 热板
205 210 205 205 205 205 7 60 120

图3

聚酰胺6基弹性体的红外光谱图"

图4

聚酰胺6基弹性体的结构"

图5

7PA2k-PEG2k样品的核磁氢谱图"

表3

PA6与PEG链段理论计算值及投料比"

样品
名称
计算值 投料比
I 3 I 6 / 2 I 8 M n , P E G / 44 / I 6 n C P L : n A A n P E G : n A A
5PA2k-PEG2k 14.78 1.03 16 0.97
7PA2k-PEG2k 14.86 0.44 16 0.42
9PA2k-PEG2k 14.72 0.11 16 0.11

表4

PA6与PA6基弹性体的分子质量与低分子可萃取物质量分数"

样品名称 数均分子量/
(104 g·mol-1)
低分子可萃取物
质量分数/%
PA6 1.85 8.89
10PA1k 1.96 2.09
9PA1k-PEG2k 1.75 3.53
8PA1k-PEG2k 1.67 3.43
7PA1k-PEG2k 1.64 5.49
6PA1k-PEG2k 14.63
9PA2k-PEG2k 1.79 3.98
7PA2k-PEG2k 1.68 5.17
5PA2k-PEG2k 15.86
9PA2k-PEG1k 1.93 1.80

图6

不同连接方式下的氢键相互作用模型示意图 注:A表示PA6段氨基己酸端;B表示PA6段己二酸端;C表示PEG段。"

图7

不同软硬段含量PA6基弹性体的熔融结晶曲线"

图8

不同软硬段分子质量PA6基弹性体的熔融结晶曲线"

表5

PA6与PA6基弹性体的热分解温度"

样品名称 T5% /℃ T95%/℃
PA6 374.9 457.8
10PA1k 347.9 448.1
9PA1k-PEG2k 343.8 446.6
8PA1k-PEG2k 341.9 436.9
7PA1k-PEG2k 333.3 435.8
6PA1k-PEG2k 324.6 433.0
9PA2k-PEG1k 351.6 445.0
9PA2k-PEG2k 347.4 446.7

图9

PA6与PA6基弹性体的XRD谱图"

表6

PA6与PA6基弹性纤维的力学性能"

样品名称 牵伸
倍数
弹性模量/
(cN·dtex-1)
断裂强度/
(cN·dtex-1)
断裂伸长率/
%
PA6 2.4 11.50 2.11 62.23
2.7 14.29 2.65 49.48
3.3 16.66 3.52 33.20
9PA1k-PEG2k 2.2 3.49 1.00 42.62
2.4 4.19 1.06 32.18
2.6 4.13 1.21 26.08
2.8 4.32 1.29 20.22
8PA1k-PEG2k 2.2 2.55 0.69 49.93
2.4 2.45 0.70 41.67
2.6 2.66 0.84 31.18
2.8 2.90 1.04 18.45
7PA1k-PEG2k 2.2 1.17 0.47 58.71
2.4 1.30 0.49 43.41
2.6 1.05 0.54 34.11
2.8 1.02 0.60 24.79
9PA2k-PEG1k 2.4 7.70 1.39 129.18
2.6 8.23 1.57 106.89
2.8 9.26 1.62 54.09

图10

不同定伸长下PA6和PA6基弹性纤维的弹性回复率"

[1] 祁婷, 肖岚, 汪军. 我国聚酰胺6产业链的发展现状[J]. 纺织导报, 2021 (4): 50-54.
QI Ting, XIAO Lan, WANG Jun. The development status of PA6 industrial chain in China[J]. China Textile Leader, 2021(4): 50-54.
[2] 祁婷. 产业链视角下我国尼龙产业集群竞争力分析与评价[D]. 上海: 东华大学, 2021: 87.
QI Ting. Analysis and evaluation on industrial cluster in China from the perspective of industrial China[D]. Shanghai: Donghua University, 2021: 87.
[3] 孙欲晓, 赵伟, 杨明辉. 己内酰胺的生产及市场分析[J]. 化学工业, 2020, 38(4): 87-90.
SUN Yuxiao, ZHAO Wei, YANG Minghui. Analysis of market of caprolactam production[J]. Chemical Industry, 2020, 38(4): 87-90.
[4] YU Y C, JO W H. Segmented block copolyetheramides based on nylon 6 and polyoxypropylene: II: structure and properties[J]. Journal of Applied Polymer Science, 1995, 56(8): 895-904.
doi: 10.1002/app.1995.070560803
[5] 李姜红. 聚酰胺弹性体基纳米复合材料的研究[D]. 镇江: 江苏科技大学, 2018: 103.
LI Jianghong. Study of elastomer nanocomposites based on polyamide-b-polyether copolymer[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018: 103.
[6] 陈一明, 周岚, 冯新星, 等. 聚酰胺6型弹性体的热稳定性研究[J]. 浙江理工大学学报(自然科学版), 2017, 37(5): 642-646.
ZHEN Yiming, ZHOU Lan, FENG Xinxing, et al. Study on thermal stability of polyamide 6 elastomer[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2017, 37(5): 642-646.
[7] 张黄平, 黄安民, 王文志, 等. PA6/PA11-b-PPG热塑性弹性体的合成及性能表征[J]. 湖南工业大学学报, 2016, 30(2): 72-76,89.
ZHANG Huangping, HUANG Anmin, WANG Wenzhi, et al. Synthesis and characterization of polyamide thermoplastic elastomer based on PA6/PA11-b-PPG[J]. Journal of Hunan University of Technology, 2016, 30(2): 72-76,89.
[8] YI C W, PENG Z H, WANG H P, et al. Synthesis and characteristics of thermoplastic elastomer based on polyamide-6[J]. Polymer International, 2011, 60(12): 1728-1736.
doi: 10.1002/pi.3140
[9] WANG H, PENG Z, WANG C. Synthesis and characterization of thermoplastic polyamide elastomer based on poly(tetramethylene glycol), ε-caprolactam and adipic acid[C]// Proceedings of 2009 International Conference on Advanced Fibers and Polymer Materials. Shanghai: Donghua University, 2009: 946-953.
[10] TSENG Y C, RWEI S P. Synthesis and characterization of the feed ratio of polyethylene oxide (0-10 wt% PEO) in the nylon-6/PEO copolymer system[J]. Journal of Applied Polymer Science, 2012, 123(2): 796-806.
doi: 10.1002/app.34653
[11] 李璐. 聚酰胺6/聚醚胺共聚物的制备及表征[D]. 上海: 东华大学, 2017: 68.
LI Lu. The preparation and characterization of polyamide 6/polyether amine copolymer[D]. Shanghai: Donghua University, 2017: 68.
[12] 缪凯伦. 聚酰胺聚醚嵌段共聚物的合成及其在锦纶织物亲水整理中的应用[D]. 杭州: 浙江理工大学, 2018: 74.
MIAO Kailun. Preparation of polyamide-polyether block copolymer and its application in hydrophilic finishing for nylon fabric[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 74.
[13] HOU L L, LIU H Z, YANG G S. A novel approach to the preparation of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization of ε-caprolactam[J]. Polymer International, 2006, 55(6): 643-649.
doi: 10.1002/(ISSN)1097-0126
[14] 易春旺. PA6-MDI-PA6/PTMG热塑性弹性体的制备与性能研究[D]. 上海: 东华大学, 2012: 143.
YI Chunwang. The study on the preparation and performances of thermoplastic elastomer PA6-MDI-PA6/PTMG[D]. Shanghai: Donghua University, 2012: 143.
[15] 杨汉彬, 曾超, 沈午枫, 等. 软硬链段含量及相对分子质量对PA 6基弹性体结构的影响[J]. 合成纤维工业, 2022, 45(2): 1-7.
YANG Hanbin, ZENG Chao, SHEN Wufeng, et al. Effect of soft and hard segments contents and relative molecular mass on structure of PA6-based elastomers[J]. China Synthetic Fiber Industry, 2022, 45(2): 1-7.
[16] 陈一明. 嵌段共聚的聚酰胺6的合成与性能表征[D]. 杭州: 浙江理工大学, 2017: 63.
CHEN Yiming. Synthesis and characterization of polyamide 6 by block copolymerization[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 63.
[17] ZHANG Shengming, ZHANG Jingchun, TANG Lian, et al. A novel synthetic strategy for preparing polyamide 6 (PA6)-based polymer with transesterification[J]. Polymers, 2019. DOI: 10.3390/polym11060978.
doi: 10.3390/polym11060978
[18] XU Jiaru, REN Xiangkui, YANG Tao, et al. Revisiting the thermal transition of β-form polyamide-6: evolution of structure and morphology in uniaxially stretched films[J]. Macromolecules, 2018, 51(1): 137-150.
doi: 10.1021/acs.macromol.7b01827
[19] HE Zuoli, ZHOU Gengheng, BYUN Joon-Hyung, et al. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors[J]. Nanoscale, 2019, 11(13): 5884-5890.
doi: 10.1039/c9nr01005j pmid: 30869716
[1] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[2] 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68.
[3] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[4] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[5] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[6] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[7] 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
[8] 张恒, 申屠宝卿, 章伟, 张一风, 崔国士. 聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能[J]. 纺织学报, 2019, 40(05): 18-23.
[9] 徐素梅 哈丽丹买买提 米娜瓦尔乌买尔 鲁提夫拉吾守尔. 月桂酸纤维素酯/聚乙二醇相变储能纤维的制备及其性能[J]. 纺织学报, 2016, 37(4): 7-14.
[10] 张国兵 王曙东 何远方 范莹莹 张红. 聚酰胺6/聚乙二醇相变调温纳米纤维的结构与性能[J]. 纺织学报, 2014, 35(7): 30-0.
[11] 张倩倩 孙卫国 张迎晨. 聚乙二醇/膨胀石墨/聚丙烯复合相变材料的制备及表征[J]. 纺织学报, 2014, 35(3): 13-0.
[12] 杨树 叶莹. 聚乙二醇/聚丙烯定形相变材料的制备及表征[J]. 纺织学报, 2013, 34(7): 10-14.
[13] 谢慧方;阮汝平;于伟东. 聚乙二醇及其二元体系的相变行为[J]. 纺织学报, 2009, 30(06): 1-5.
[14] 王玮玲;于伟东. 二元聚乙二醇体系相变行为的研究[J]. 纺织学报, 2005, 26(6): 1-4.
[15] 程嘉祺;朱新生;程丝;陆红星. 反应挤出法及其在合成纤维工业中的应用[J]. 纺织学报, 2001, 22(04): 54-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!