纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 201-209.doi: 10.13475/j.fzxb.20210700509
HE Mantang1, WANG Liming1(), QIN Xiaohong1, YU Jianyong2
摘要:
静电纺纳米纤维因其具有高比表面积、孔隙结构可控等优点而被用作界面太阳能蒸汽发生器基底,然而由于其力学性能不足、与光热材料的结合力差等限制了其长足发展。为此,介绍了静电纺纳米纤维的特点及其与光热材料结合的主要方式,包括表面修饰、共混纺丝、Janus纳米纤维膜以及三维纳米纤维气凝胶,对其原理、性能和工艺方法等进行系统性概述;并在此基础上展望了该研究领域的未来发展趋势,以探索静电纺纳米纤维在光热能源领域中广泛应用的方法。研究认为,加强静电纺纳米纤维与光热材料结合力并赋予其抗菌、自清洁等多功能性,是提高太阳能蒸汽发生器持久使用的一大方法,探寻简易的制备方法和开发低成本材料高性能太阳能蒸汽发生器是未来的发展重点。
中图分类号:
[1] | 杨宇笛, 徐壁, 蔡再生. 基于染色斜纹棉布的太阳能驱动界面水蒸发体系的研究[J]. 产业用纺织品, 2020, 38 (3): 29-35. |
YANG Yudi, XU Bi, CAI Zaisheng. Study on solar driven interfacial water evaporation system based on dyed twill cotton fabric[J]. Technical Textiles, 2020, 38 (3): 29-35. | |
[2] |
YAO H, ZHANG P, HUANG Y, et al. Highly efficient clean water production from contaminated air with a wide humidity range[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201905875.
doi: 10.1002/adma.201905875 |
[3] | 常宇虹. 纳米过渡金属氧族化合物的太阳能光热蒸汽转化研究[D]. 济南: 山东大学, 2019: 1-94. |
CHANG Yuhong. Study on solar photothermal steam con version of nanosized transition metal oxides[D]. Ji'nan: Shandong University, 2019: 1-94. | |
[4] | 高婷婷. 碳基复合材料的制备及其能源存储与光热转化性能的研究[D]. 上海: 东华大学, 2019: 5-6. |
GAO Tingting. Preparation of carbon matrix composites and their energy storage and photothermal conversion properties[D]. Shanghai: Donghua University, 2019: 5-6. | |
[5] |
WEI Z, CAI C, HUANG Y, et al. Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106138.
doi: 10.1016/j.nanoen.2021.106138 |
[6] | 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173. |
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42 (12): 166-173. | |
[7] |
LIU X, TIAN Y, CHEN F, et al. An easy-to-fabricate 2.5D evaporator for efficient solar desalination[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202100911.
doi: 10.1002/adfm.202100911 |
[8] |
XU X, OZDEN S, BIZMARK N, et al. A bioinspired elastic hydrogel for solar-driven water purification[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202007833.
doi: 10.1002/adma.202007833 |
[9] |
CHEN C, LI Y, SONG J, et al. Highly flexible and efficient solar steam generation device[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201701756.
doi: 10.1002/adma.201701756 |
[10] |
LEE J, KIM K, PARK S H, et al. Macroporous photothermal bilayer evaporator for highly efficient and self-cleaning solar desalination[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105130.
doi: 10.1016/j.nanoen.2020.105130 |
[11] | 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121. |
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121. | |
[12] |
HE M, DAI H, LIU H, et al. High-performance solar steam generator based on polypyrrole-coated fabric via 3D macro-and microstructure design[J]. ACS Appl Mater Interfaces, 2021, 13(34): 40664-40672.
doi: 10.1021/acsami.1c11802 |
[13] |
HE M, ALAM M K, LIU H, et al. Textile waste derived cellulose based composite aerogel for efficient solar steam generation[J]. Composites Communications, 2021. DOI: 10.1016/j.coco.2021.100936.
doi: 10.1016/j.coco.2021.100936 |
[14] |
LIU Y, LIU H, XIONG J, et al. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.131539.
doi: 10.1016/j.cej.2021.131539 |
[15] |
LIU H, ALAM M K, HE M, et al. Sustainable cellulose aerogel from waste cotton fabric for high-performance solar steam generation[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49860-49867.
doi: 10.1021/acsami.1c13362 |
[16] |
GUO X, GAO H, WANG S, et al. Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114535.
doi: 10.1016/j.desal.2020.114535 |
[17] | CHALA T F, WU C M, CHOU M H, et al. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28955-28962. |
[18] |
LIU Y, XIONG J, LI A, et al. Plasmonic silver nanoparticle-decorated electrospun nanofiber membrane for interfacial solar vapor generation[J]. Textile Research Journal, 2021. DOI: 10.1177/00405175211014966.
doi: 10.1177/00405175211014966 |
[19] |
WU X, WU Z, WANG Y, et al. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator[J]. Advanced Science, 2021. DOI: 10.1002/advs.202002501.
doi: 10.1002/advs.202002501 |
[20] |
LEI W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evapora-tion[J]. Nano Research, 2020, 14(4): 1135-1140.
doi: 10.1007/s12274-020-3162-5 |
[21] |
LI L, ZANG L, ZHANG S, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191-197.
doi: 10.1016/j.jtice.2020.03.015 |
[22] |
ZHOU Q, LI H, LI D, et al. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation[J]. J Colloid Interface Science, 2021, 592: 77-86.
doi: 10.1016/j.jcis.2021.02.045 |
[23] |
WU D, LIANG J, ZHANG D, et al. Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carboni-zation[J]. Solar Energy Materials and Solar Cells, 2020. DOI: 10.1016/j.solmat.2020.110591.
doi: 10.1016/j.solmat.2020.110591 |
[24] |
IRSHAD M S, ARSHAD N, WANG X. Nanoenabled photothermal materials for clean water production[J]. Global Challenges, 2020. DOI: 10.1002/gch2.202000055.
doi: 10.1002/gch2.202000055 |
[25] |
QI Q, WANG W, WANG Y, et al. Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.116595.
doi: 10.1016/j.seppur.2020.116595 |
[26] |
JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7942-7949.
doi: 10.1039/C8TA00187A |
[27] |
HUANG J, HU Y, BAI Y, et al. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114529.
doi: 10.1016/j.desal.2020.114529 |
[28] |
LI D, ZHANG X, ZHANG S, et al. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128916.
doi: 10.1016/j.chemosphere.2020.128916 |
[29] |
GAO T, LI Y, CHEN C, et al. Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement[J]. Small Methods, 2019. DOI: 10.1002/smtd.201800176.
doi: 10.1002/smtd.201800176 |
[30] |
XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018. DOI: 10.1002/aenm.201702884.
doi: 10.1002/aenm.201702884 |
[31] | LI W, DENG L, HUANG H, et al. Janus photothermal membrane as an energy generator and a mass-transfer accelerator for high-efficiency solar-driven membrane distillation[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 26861-26869. |
[32] |
WU T, LI H, XIE M, et al. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating[J]. Materials Today Energy, 2019, 12: 129-135.
doi: 10.1016/j.mtener.2018.12.008 |
[33] |
HE M T, LIU H J, WANG L M, et al. One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation dagger[J]. Materials Chemistry Frontiers, 2021, 5: 3673-3680.
doi: 10.1039/D1QM00101A |
[34] |
ZHAO J, HUANG Q, GAO S, et al. In situ photo-thermal conversion nanofiber membrane consisting of hydrophilic PAN layer and hydrophobic PVDF-ATO layer for improving solar-thermal membrane distil-lation[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.memsci.2021.119500.
doi: 10.1016/j.memsci.2021.119500 |
[35] |
XU Y, XU H, ZHU Z, et al. A mechanically durable, sustained corrosion-resistant photothermal nanofiber membrane for highly efficient solar distillation[J]. Journal of Materials Chemistry A, 2019, 7(39): 22296-22306.
doi: 10.1039/C9TA05042F |
[36] |
FAN X, LV B, XU Y, et al. Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation[J]. Solar Energy, 2020, 209: 325-333.
doi: 10.1016/j.solener.2020.09.013 |
[37] |
HUANG Q, GAO S, HUANG Y, et al. Study on photothermal PVDF/ATO nanofiber membrane and its membrane distillation performance[J]. Journal of Membrane Science, 2019, 582: 203-210.
doi: 10.1016/j.memsci.2019.04.019 |
[38] | ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. |
[39] |
LIU H, LIU Y, WANG L, et al. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation[J]. Carbon, 2021, 177: 199-206.
doi: 10.1016/j.carbon.2021.02.081 |
[40] |
ZHAO Q, DU C, JIA Y, et al. Solar-powered Janus membrane for one-step conversion of sewage to clean water[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124131.
doi: 10.1016/j.cej.2020.124131 |
[41] |
PENG F, XU J, BAI X, et al. A Janus solar evaporator with 2D water path for highly efficient salt-resisting solar steam generation[J]. Solar Energy Materials and Solar Cells, 2021. DOI: 10.1016/j.solmat.2020.110910.
doi: 10.1016/j.solmat.2020.110910 |
[42] | QIN Z, SUN H, TANG Y, et al. Bioinspired hydrophilic-hydrophobic Janus composites for highly efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19467-19475. |
[43] |
CHEN M, LIN X, ZENG C, et al. Poly (p-phenylene benzobisoxazole) nanofiber/reduced graphene oxide composite aerogels toward high-efficiency solar steam generation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125997.
doi: 10.1016/j.colsurfa.2020.125997 |
[44] | DENG X, NIE Q, WU Y, et al. Nitrogen-doped unusually superwetting, thermally insulating, and elastic graphene aerogel for efficient solar steam gener-ation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26200-26212. |
[45] |
MENG X, XU W, LI Z, et al. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purifi-cation[J]. Advanced Fiber Materials, 2020, 2(2): 93-104.
doi: 10.1007/s42765-020-00029-9 |
[46] | LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26033-26040. |
[47] |
DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201908269.
doi: 10.1002/adma.201908269 |
[48] | MEI T, CHEN J, ZHAO Q, et al. Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42686-42695. |
[1] | 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35. |
[2] | 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63. |
[3] | 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202. |
[4] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[5] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[6] | 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69. |
[7] | 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85. |
[8] | 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30. |
[9] | 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73. |
[10] | 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42. |
[11] | 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33. |
[12] | 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68. |
[13] | 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22. |
[14] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[15] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
|