纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 67-72.doi: 10.13475/j.fzxb.20211107206

• 纺织工程 • 上一篇    下一篇

三维间隔空芯可变提花织物的织造工艺设计

周志芳, 周赳(), 彭稀, 黄锦波   

  1. 浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2021-11-16 修回日期:2022-08-17 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 周赳(1969—),男,教授,博士。主要研究方向为纺织材料与纺织品设计。E-mail:zhoujiu34@126.com
  • 作者简介:周志芳(1988—),男,博士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(J201802)

Weaving process design for three-dimensional changeable spacer jacquard fabrics

ZHOU Zhifang, ZHOU Jiu(), PENG Xi, HUANG Jinbo   

  1. Key Laboratory for Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-11-16 Revised:2022-08-17 Published:2023-03-15 Online:2023-04-14

摘要:

为减少综框数量对三维机织物制备的限制,提高三维机织物结构和织造工艺的可设计性,提出一种空芯结构可变的三维间隔空芯提花织物的织造方法。对现有的电子提花织机进行改造,地组织经纱由2组综眼位置不同的综框控制,形成双梭口,纵向经纱由提花通丝控制,配合纹织CAD,在托杆的辅助下与上下地组织纬纱进行交织,调换托杆的运动方向时,与托杆相连的纵向经纱就会出现交叉,将2层地组织连成一体,完成三维间隔空芯提花织物的织造。与三维实芯机织物的强力测试对比结果表明,本文织造方法可在织物强力损伤较小的前提下,实现空芯结构可变的三维间隔织物的织造。

关键词: 三维间隔织物, 空芯结构, 织造工艺, 电子提花, 双梭口

Abstract:

Objective In order to bypass the limitation of the number of heald frames on the preparation of three-dimensional woven fabric and improve the design-ability of three-dimensional woven fabrics and weaving process, a weaving method of three-dimensional spaced jacquard fabric with variable spacer core structures is proposed.

Method An electronic jacquard loom was modified for weaving spacer fabrics. The ground warp is controlled by two groups of heald frames with different heald eye positions to form double sheds and the longitudinal warp was controlled by jacquard together with the use of weaving CAD. With the aid of the support rod, the longitudinal warp was interwoven with the weft to form the ground fabrics. When the movement direction of the support rod was changed, the longitudinal warp would cross between the two ground fabrics and connect the ground fabrics into one three-dimensional structure, so as to complete the weaving of three-dimensional spacer Jacquard fabric.

Results A three-dimensional spacer fabric is composed of three groups of yarns, where the ground weave warp yarn constitutes the fabric length direction, the surface weft yarn forms the width direction of the fabric, and the longitudinal warp yarn constitutes the fabric thickness direction. The weaving structure suggested that the longitudinal warp yarns are divided into two groups, and the yarns are interlaced with the upper and lower weft yarns in turn to form a three-dimensional spacer fabric with solid core. The longitudinal warp yarn is controlled by jacquard. According to the jacquard CAD design, with the assistance of the support bar, the weft yarn can be interweaved in different ways, forming a three-dimensional spacer fabric with variable hollow core structure. The longitudinal warp can be evenly divided into two groups with the help of the supporting shaft, and the yarn can be interwoven with the upper and lower weft separately. The longitudinal warp can also move vertically with the supporting stem between the ground tissues. When the supporting rod changes the direction of movement, the longitudinal warp will also move with it, completing the exchange of longitudinal positions, connecting the upper and lower layers of ground tissues into a whole. The surface texture of the test fabric is plain weave structure, the side section is hollow core structure and solid core structure are interlaced (Fig.5(c)), and the hollow part is square structure(Fig.5(b)). Through the tensile test of solid/hollow three-dimensional spacer fabric, as shown in Tab.2, the breaking strength of hollow fabric is reduced by about 20%, and the breaking elongation is increased by about 8% compared to the solid fabric, because there are fewer longitudinal warp junction points in the hollow fabric. Moreover the hollow structure makes the fabric bear uneven force when being stretched, resulting in a decrease in strength. The hollow structure also enhances the deformability of the spacer fabric.

Conclusion This paper proposed a production process of three-dimensional spaced jacquard fabric with variable hollow core structure. In actual production, the spacing distance of three-dimensional fabric can be adjusted by the warp let off of longitudinal warp and the movement height of the supporting rod. Using this weaving method, healds of different heights can be adopted to design the weaving process of three-shed or multi-shed, so as to complete the weaving of multi-layer spacer hollow core fabric. Compared with the strength of solid core spacer fabric, the strength of hollow core spacer fabric in both warp and weft directions decreased, and the strain increased slightly. This process can produce three-dimensional fabric with variable hollow core structure under the premise of less strength damage, and increase the designability and application field of three-dimensional spacer fabrics.

Key words: three-dimensional spaced woven fabric, hollow core structure, weaving process, electronic jacquard, double shed

中图分类号: 

  • TS105.1

图1

提花三维间隔织机结构简要示意图 1—纵向经纱;2—导纱板;3—上地经;4—下地经;5—停经装置;6—综框;7—通丝;8—提花龙头;9—钢筘;10—压辊;11—卷取装置。"

图2

三维织机双梭口开口示意图 1,2—提花通丝;3,4—上地经综框;5,6—下地经综框;7—纬纱;8—纵向经纱;9—上地经;10—下地经;11—托杆。"

图3

上机图"

图4

提花三维间隔织物纵向经纱与纬纱交织图 1,2—提花通丝;3,4—上地经综框;5,6—下地经综框;7—纬纱;8—纵向经纱;9—上地经;10—下地经。"

表1

织造参数"

结构 经纱规格 纬纱规格 地组织纬密/(根·cm-1) 地组织经密/(根·cm-1) 幅宽/cm 间隔距离/mm 总经根数
空芯结构 28 tex涤纶 28 tex涤纶 22 24 75 5 4 950
实芯结构 28 tex涤纶 28 tex涤纶 22 24 75 5 4 950

图5

空芯织物和实芯织物的结构"

表2

织物强力测试结果"

织物 断裂强力/N 断裂伸长率/%
经向 纬向 经向 纬向
实芯织物 924.97 1 439.57 42.78 43.94
空芯织物 854.73 1 177.97 48.86 49.26

图6

织物拉伸性能测试"

[1] 涂莉, 孟家光. 三维纺织复合材料研究进展[J]. 上海纺织科技, 2019, 47(6): 4-7,24.
TU Li, MENG Jiaguang. Research progress of three-dimensional textile composites[J]. Shanghai Textile Science & Technology, 2019, 47(6): 4-7, 24.
[2] FAZELI M, HUBNER M, LEHMANN T, et al. Development of spatially branched woven node structures on the conventional weaving loom[J]. Textile Research Journal, 2016(88): 1453-1465.
[3] ZHENG L, AOURAGHE M A, ZHANG K, et al. Ultra-light 3D fabric reinforced composite with distinct thermal insulation and superior sound-absorbing properties[J]. Journal of Physics: Conference Series, 2021, 1790(1): 1-6.
[4] 胡慧娜, 裴鹏英, 胡雨, 等. 三维机织物的分类、性能及织造[J]. 纺织导报, 2017(12): 26-30.
HU Huina, PEI Pengying, HU Yu, et al. Three-dimensional woven fabric: classification, properties and production[J]. China Textile Leader, 2017(12): 26-30.
[5] 郭兴峰. 三维机织物[M]. 北京: 中国纺织出版社, 2015: 14-31.
GUO Xingfeng. Three-dimensional woven fabrics[M]. Beijing: China Textile & Apparel Press, 2015: 14-31.
[6] HAN G J. Research progress in mechanical properties of three-dimensional woven composites[J]. China High-Tech, 2018(13): 69-70.
[7] CHEN X. Advances in 3D textiles[M]. Amsterdam: Elsevier, 2015: 53-76.
[8] YANG H, SUNG M, YANG J, et al. Continuous and rapid production of three-dimensional woven fabric preforms using a new weaving technique[J]. Functional Composites and Structures, 2020, 2 (1): 1-23.
[9] 胡雨. 三维机织物在多综眼织机上的设计与织造[D]. 武汉: 武汉纺织大学, 2018: 1-5.
HU Yu. Design and weaving of three-dimensional woven fabrics on multi-eyelet loom[D]. Wuhan: Wuhan Textile University, 2018: 1-5.
[10] 钟鹏, 贺辛亥, 董红坤, 等. 多综眼多剑杆织机的改进设计[J]. 纺织器材, 2016(6): 13-15.
ZHONG Peng, HE Xinhai, DONG Hongkun, et al. Design modification of the multi-heald-eye loom with multi rapier head[J]. Textile Accessories, 2016(6): 13-15.
[11] 王梦远, 曹海建, 钱坤, 等. 新型三维织物夹芯复合材料的制备及其力学性能[J]. 宇航材料工艺, 2015(2): 55-58.
WANG Mengyuan, CAO Haijian, QIAN Kun, et al. Preparation and mechanical properties of new 3D fabric sandwich composites[J]. Aerospace Materials & Technology, 2015(2): 55-58.
[12] 黄锦波, 祝成炎, 张红霞, 等. 基于剑杆织机改造的三维间隔机织物工艺与设计[J]. 纺织学报, 2021, 42(6): 166-170.
HUANG Jinbo, ZHU Chengyan, ZHANG Hongxia, et al. Design and weaving of three-dimensional spacer fabric based on rapier loom[J]. Journal of Textile Research, 2021, 42(6): 166-170.
[13] 祝成炎, 周小红. 现代织造原理与应用[M]. 北京: 中国纺织出版社, 2016: 1-3.
ZHU Chengyan, ZHOU Xiaohong. Principles and applications of modern weaving technology[M]. Beijing: China Textile & Apparel Press, 2016: 1-3.
[14] 裴鹏英. 三维密度梯度蜂窝织物的制备及其复合材料的抗冲击性研究[D]. 武汉: 武汉纺织大学, 2018: 14-18.
PEI Pengying. Preparation of three-dimensional density gradient honeycomb fabric and impact resistance test of its composites[D]. Wuhan: Wuhan Textile University, 2018: 14-18.
[1] 黄锦波, 祝成炎, 张红霞, 洪兴华, 周志芳. 基于剑杆织机改造的三维间隔机织物工艺设计[J]. 纺织学报, 2021, 42(06): 166-170.
[2] 张进武. 纬向曲线机织物的织造技术[J]. 纺织学报, 2017, 38(08): 39-43.
[3] 董红坤 贺辛亥 钟鹏 渠志刚 邢圆圆. 三维机织物织边造型工艺设计[J]. 纺织学报, 2017, 38(04): 50-54.
[4] 蔡欣 李佩. 宋代绞经花纱织造工艺及其数学建模[J]. 纺织学报, 2016, 37(11): 42-47.
[5] 李晓英 蒋高明 马丕波 聂小林. 三维横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016, 37(07): 66-70.
[6] 于红梅 郁崇文. 采用现代工艺的传统风格夏布开发[J]. 纺织学报, 2016, 37(05): 37-41.
[7] 黄晓梅;唐虹;张琛琛;施建飞. 键盘织物一体化结构的构建与织造[J]. 纺织学报, 2010, 31(8): 45-48.
[8] 沈炜;胡弘波;袁嫣红. 电子提花机控制数据变换及实现[J]. 纺织学报, 2010, 31(6): 125-128.
[9] 谢真;陈宗农. 基于ARM和μC/OS-Ⅱ的数码织机控制系统[J]. 纺织学报, 2008, 29(3): 105-109.
[10] 张森林;沈国炎. 直线电机在电子提花机中的应用[J]. 纺织学报, 2008, 29(11): 119-123.
[11] 吴振谦. 基于ARM的电子提花机网络控制系统[J]. 纺织学报, 2007, 28(2): 115-118.
[12] 沈炜;胡钦彤;李慧. 基于通讯协议的提花控制研究[J]. 纺织学报, 2006, 27(5): 29-33.
[13] 沈炜;吴钦彤. 6144针大型电子提花机的机械结构和控制系统[J]. 纺织学报, 2006, 27(1): 80-82.
[14] 沈炜;王弋;王伯奇. 通用电子提花机控制系统设计方案[J]. 纺织学报, 2004, 25(05): 113-114.
[15] 郑智毓. QH1500型电子提花机性能分析[J]. 纺织学报, 2004, 25(03): 40-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!