纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 96-103.doi: 10.13475/j.fzxb.20211202308

• 染整与化学品 • 上一篇    下一篇

沤竹过程中细菌菌群的结构变化和作用

李宇1,2, 傅佳佳1,2(), CAVACO-PAULO Artur1,2, 王鸿博1,2, 高卫东1,2   

  1. 1.江南大学 江苏省功能纺织品工程技术研究中心, 江苏 无锡 214122
    2.江南大学 生态纺织教育部重点实验室, 江苏 无锡 214122
  • 收稿日期:2021-12-13 修回日期:2022-12-21 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 傅佳佳(1983—),女,教授,博士。研究方向为纤维制品绿色加工技术及清洁化生产。E-mail:kathyfjj@126.com
  • 作者简介:李宇(1993—),女,博士生。主要研究方向为功能化纺织品。
  • 基金资助:
    国家自然科学基金面上项目(31470509);中国博士后科学基金资助项目(2019T120390);江苏省政策引导类计划项目(BZ2020010)

Structural changes and effects of bacterial community in bamboo retting

LI Yu1,2, FU Jiajia1,2(), CAVACO-PAULO Artur1,2, WANG Hongbo1,2, GAO Weidong1,2   

  1. 1. Jiangsu Engineering Technology Research Center of Functional Textile, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-12-13 Revised:2022-12-21 Published:2023-03-15 Online:2023-04-14

摘要:

为缩短竹材生物脱胶时间,得到能够满足后道加工的工艺纤维(竹束),并提高成品质量,探索了温水沤竹过程中细菌菌群结构的演替规律及作用机制。采用高通量测序与传统可培养技术相结合的方法,确定了沤竹过程中的优势菌;并结合水沤过程中竹块的形态变化以及竹块与竹束的化学成分差异,分析了菌群在水沤脱胶过程中的作用。结果表明:竹材的水沤脱胶过程以木质素的降解为主,以竹粉为唯一碳源筛选得到的5 株菌株,在属水平上仅占总菌群的0.70%~3.21%,优势可培养菌种为黏质沙雷氏菌(Serratia marcescens)和枯草芽孢杆菌枯草亚种(Bacillus subtilis subsp. subtilis)。筛选获得的可培养菌种中缺少起发酵作用使竹块膨胀的菌种,因此,预处理-优势菌种复配的联合工艺可以作为一种提高竹脱胶效率的手段。

关键词: 沤竹, 木质素降解, 细菌菌群, 高通量测序, 黏质沙雷氏菌, 枯草芽胞杆菌

Abstract:

Objective Bacteria produce enzymes, which can hydrolyze the ingredients from bamboo. Based on this understanding, the water-retting process is adopted to extract bamboo fiber bundles. Changes in the bacterial community structure of the water-retting liquid are investigated to reveal key functional bacteria in bamboo-retting process and to obtain high-quality bamboo fiber bundles within less time.

Method The images of the cross-section and longitudinal structure of bamboo fiber bundles were recorded by the optical microscope, and the main chemical components of bamboo fiber bundles, such as cellulose, hemicellulose, lignin, and pectin, were evaluated and compared with that of un-retted bamboo culms. High-throughput sequencing and culturable methodology were adopted to explore the dominant strains during bamboo retting. Furthermore, the changes in morphology and chemical components of bamboo were characterized to analyze the effect of bacterial community during the retting.

Results The obtained bamboo fiber bundles are composed of many single fibers which are as long as the un-retted bamboo culms. The cellulose content in bamboo fiber bundles increases by 6.56%, while the lignin content declines by 4.01% relative to un-retted bamboo culms(Tab.1). High-throughput sequencing results (Tab.2) provide 39636-57850 sequences, which are classified as 483-900 operational taxonomic units (OTUs) at the similarity level of 97%. Alpha diversity of retting liquid shows high microbial diversity in all the flora. From Fig.3 and Tab. 3, 14 phyla and 25 genera are detected from 6 samples collected at different retting time periods. At the phylum level, about 99% of the sequences belong to Proteobacteria and Firmicute. Also, Firmicute reaches the highest relative abundance of 29.25% on the 18th day of retting. Pseudomonas and Enterobacter with lignin-decomposing capability are founded as the dominant bacterial throughout the retting at the genus level. The abundances of other lignin-decomposing bacteria (Sphingomonas and Acinetobacter) are higher in the first six days. The bacteria related to the fermentation of bamboo culms belongs to Lactococcus, which is only detected on the 3rd day of retting. As the retting goes on, the abundances of Stenotrophomonas, Clostridium sensu stricto, and Clostridium IV appear to rise, resulting in the hydrolysis of hemicellulose and cellulose. The bacteria that can degrade pectin belongs to Ralstonia, taking a proportion of 10.97% on the 21st day of retting. When the bamboo powder is used as the only carbon source, 5 strains are able to multiply and account for 0.70%-3.21% of the total bacteria community at the genus level (Fig.4). Serratia marcescens and Bacillus subtilis subsp. Subtilis are regarded as key functional bacterial and these strains effectively degrade non-cellulose compounds with the cooperation of Citrobacter sp. and Klebsiella oxytoca. Macromolecule lignin in bamboo is broken into small molecules by Serratia marcescens and Citrobacter sp., and then decomposed by Bacillus subtilis subsp. Subtilis and Klebsiella oxytoca. With the degradation of lignin, Bacillus subtilis subsp. Subtilis can efficiently attack hemicellulose and pectin in the internal structure of bamboo. However, strains that can swell the bamboo culms are lacking among the culturable bacteria.

Conclusion Lignin degradation is crucial to bamboo retting. Bamboo fiber bundles in any required length can be obtained by retting with the purpose to meet the needs for subsequent processing. In all the flora, Pseudomonas and Enterobacter are the predominant bacteria and contribute to decomposing lignin, but they could not take advantage of bamboo powders as the only carbon source. Among the culturable bacteria, Serratia marcescens and Bacillus subtilis subsp. Subtilis are the primary bacteria, acting on the degradation of non-cellulose components. At the early stage of retting, bamboo swelling is not enough, so a combined treatment with pretreatment and complex use of dominant strains may efficiently improve the bamboo fiber extraction.

Key words: bamboo retting, lignin degradation, bacterial community structure, high-throughput sequencing, Serratia marcescens, Bacillus subtilis

中图分类号: 

  • TS121.8

表1

竹块和竹束中主要化学成分的含量"

竹样 纤维素/% 半纤维素/% 果胶/% 木质素/%
竹块(未经水沤) 42.05±0.61 32.94±1.26 18.32±0.19
竹束(水沤第24天) 48.61±0.64 33.75±1.14 0.61±0.11 14.31±0.85

图1

沤制所得竹束的光学显微镜照片(×40)"

图2

不同沤竹阶段沤液的PCR扩增产物以及DNA标准品的电泳图"

表2

不同沤竹阶段沤液的alpha多样性"

样品编号 测序量 操作分类
单元数量
多样性 丰富度 覆盖率/%
香浓指数 辛普森指数 ACE Chao1
D03 37 853 465 1.936 7 0.293 5 908.55 682.81 0.994 6
D06 49 064 900 2.063 2 0.357 2 1426.77 1295.00 0.991 9
D12 57 850 724 1.912 6 0.309 3 1575.55 1106.60 0.994 0
D18 48 518 541 2.272 2 0.273 4 886.48 833.57 0.994 9
D21 39 636 483 2.688 2 0.127 0 722.60 672.06 0.995 1
D24 41 887 504 2.503 4 0.185 0 1137.10 805.25 0.994 2

图3

沤液中总细菌菌群在门水平上的相对丰度"

表3

沤液中总细菌菌群在属水平上的相对丰度"

菌属名称 D03 D06 D12 D18 D21 D24
假单胞菌属 9.25 2.05 34.13 51.33 26.08 13.33
肠杆菌属 28.20 62.86 44.48 1.95 8.80 7.09
寡养单胞菌属 0.32 21.67 0.17 7.01 24.82 39.39
草螺菌属 45.75 0.06 0 2.56 14.95 10.72
乳球菌属 2.04 0 0 0 0 0.03
梭菌属IV 0 0 0.27 23.15 4.54 3.36
狭义梭菌属 0.08 0.02 5.67 2.33 2.65 0.49
未定义菌属 0.32 0.82 3.09 0.12 0.09 0.48
伯克氏菌属 0.44 0.06 0 2.61 0.67 3.89
布丘氏菌属 1.05 1.51 3.28 1.32 0.41 1.20
哈夫尼亚菌属 0.7 0.76 1.76 0.08 0.08 0
慢生根瘤菌属 0 0 0.05 0.02 0 4.14
无色杆菌属 0 0 0 0 0 4.41
不动杆菌属 3.25 1.25 0.08 0.05 0.12 0.26
沙雷氏菌属 1.52 0.73 1.86 0.12 0.06 0.54
罗尔斯顿菌属 0.03 0.01 0.03 0.04 10.97 0.51
鞘氨醇单胞菌属 4.22 1.25 0.37 0.06 0.18 0.03
苍白杆菌属 0 0 0 0.49 0 2.07
枯草杆菌属 0.01 1.38 0.99 0.8 0.69 0.03
梭菌属XlVa 0.03 0.22 0.56 2.24 2.29 0.04
欧文氏菌属 0.51 0.21 0.01 2.22 0 0.01
食酸菌属 0 0.07 0 0.08 0.03 1.54
丛毛单胞菌属 0 0 0 0.01 0 3.17
拉乌尔菌属 0.7 1.5 0.48 0.01 0 0.01

表4

可培养菌株的16S rDNA序列相似性分析"

菌株编号 菌种名称 相似度/% GenBank中的登录号 菌株所在样品
A 黏质沙雷氏菌 99 KM252937.1 D03、D06、D12、D18、D21、D24
B 枯草芽孢杆菌枯草亚种 98 GQ375227.1 D06、D12、D18、D21
C 柠檬酸杆菌 99 AB673462.1 D06
D 产酸克雷伯氏菌 100 KP420003.1 D12
E 产酸克雷伯氏菌 100 HM461887.1 D12

图4

沤液中可培养细菌菌群在属水平上的相对丰度"

[1] SHINOHARA Y, MISUMI Y, KUBOTA T, et al. Characteristics of soil erosion in a moso-bamboo forest of western Japan: comparison with a broadleaved forest and a coniferous forest[J]. Catena, 2019, 172: 451-460.
doi: 10.1016/j.catena.2018.09.011
[2] ZUO Y, LI W, LI P, et al. Preparation and characterization of polylactic acid-g-bamboo fiber based on in-situ solid phase polymerization[J]. Industrial Crops and Products, 2018, 123: 646-653.
doi: 10.1016/j.indcrop.2018.07.024
[3] 熊伟, 潘贝贝, 宋卫卫, 等. 竹原纤维的性能及开发[J]. 林业机械与木工设备, 2018, 46(6): 32-35.
XIONG Wei, PAN Beibei, SONG Weiwei, et al. Development and performance of bamboo fiber[J]. Forestry Machinery and Woodworking Equipment, 2018, 46(6): 32-35.
[4] 梁盈春, 岳文侠. 竹彩棉内衣的发展与前景展望[J]. 纺织科技进展, 2019(5): 1-3.
LIANG Yingchun, YUE Wenxia. Develpoment and prospect of bamboo colored cotton underwear[J] Progress in Textile Science in Technology, 2019(5): 1-3.
[5] 周玲, 傅佳佳, 王鸿博. 涤/棉/竹浆纤维混色混纺仿毛织物风格评价[J]. 纺织学报, 2016, 37(5): 51-55.
ZHOU Ling, FU Jiajia, WANG Hongbo. Evaluation on style of polyester /cotton /bamboo pulp fiber blended and color mixtured wool-like fabrics[J]. Journal of Textile Research, 2016, 37(5): 51-55.
[6] 欧阳鹏飞, 张玉芳, 贾春紫, 等. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(1): 21-25.
OUYANG Pengfei, ZHANG Yufang, JIA Chunzi, et al. Properties of regenerated fibers from bamboo pulp/ionic liquid combined system[J]. Journal of Textile Research, 2020, 41(1): 21-25.
[7] SINGH B, DESSALEGN M Y. Effect analysis of extraction processes of bamboo fiber[J]. NVEO-Natural Volatiles and Essential Oils, 2021, 8(5): 4226-4246.
[8] 范宏玥, 陈礼辉, 苗庆显, 等. 毛竹竹原纤维的制备及其表征[J]. 林业机械与木工设备, 2020, 48(5): 37-41.
FAN Hongyue, CHEN Lihui, MIAO Qingxian, et al. Preparation and characterization of natural moso bamboo fiber[J]. Forestry Machinery and Woodworking Equipment, 2020, 48(5): 37-41.
[9] 王春红, 陈祯, 李园平, 等. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15.
WANG Chunhong, CHEN Zhen, LI Yuanping, et al. Classified extraction and properties of bamboo fiber[J]. Journal of Textile Research, 2017, 38(11): 9-15.
[10] 赵鹤, 苗庆显, 黄六莲, 等. 竹原长纤维制备及其增强聚丙烯复合材料研究[J]. 林业工程学报, 2021, 6(5): 96-103.
ZHAO He, MIAO Qingxian, HUANG Liulian, et al. Preparation of long bamboo fiber and its reinforced polypropylene membrane composites[J]. Journal of Forestry Engineering, 2021, 6(5): 96-103.
[11] GOKARNESHAN N, KHA A. Antimicrobial properties of bamboo fibres[J]. Biomedical Journal of Scientific and Technical Research, 2020, 32(5): 25299-25302.
[12] 马顺彬. 竹浆纤维色织经起花织物的设计与生产[J]. 上海纺织科技, 2018, 46(3): 33-34.
MA Shunbin. Design and production of bamboo pulp fiber yarn-dyed warp figured fabric[J]. Shanghai Textile Science and Technology, 2018, 46(3): 33-34.
[13] BLEUZE L, LASHERMES G, ALAVOINE G, et al. Tracking the dynamics of hemp dew retting under controlled environmental conditions[J]. Industrial Crops and Products, 2018, 123: 55-63.
doi: 10.1016/j.indcrop.2018.06.054
[14] SUMMERSCALE J. A review of bast fibres and their composites: part 4: organisms and enzyme processes[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI: 10.1016/j.compositesa.2020.106149.
doi: 10.1016/j.compositesa.2020.106149
[15] 诸葛荣夏. 腐浆中木质纤维降解菌的筛选[D]. 南京: 南京林业大学, 2020: 27-28.
ZHUGE Rongxia. Screening and construction of compound microbial system of lignin and cellulose degrading bacteria from slime of paper mill[D]. Nanjing: Nanjing Forestry University, 2020: 27-28.
[16] 杨静, 蒋剑春, 张宁, 等. 微生物降解木质素的研究进展[J]. 生物质化学工程, 2021, 55(3): 62-70.
doi: 10.3969/j.issn.1673-5854.2021.03.010
YANG Jing, JIANG Jianchun, ZHANG Ning, et al. Research progress on lignin degradation by micro-organism[J]. Biomass Chemical Engineering, 2021, 55(3): 62-70.
doi: 10.3969/j.issn.1673-5854.2021.03.010
[17] WANG J X, LIANG J D, GAO S. Biodegradation of lignin monomers vanillic, p-coumaric, and syringic acid by the bacterial strain, Sphingobacterium sp. HY-H[J]. Current Microbiology, 2018, 75(9): 1156-1164.
doi: 10.1007/s00284-018-1504-2
[18] 杨艳华. 农作物秸秆高效降解菌的筛选与菌剂制备研究[D]. 杭州: 浙江农林大学, 2020: 15-20, 28.
YANG Yanhua. Study on screening of efficiency straw-degrading strains and preparation of decomposed inoculants for crop straw[D]. Hangzhou: Zhejiang A&F University, 2020: 15-20, 28.
[19] 艾士奇, 赵一全, 孙志远, 等. 复合菌系降解纤维素过程中微生物群落结构的变化[J]. 生物工程学报, 2018, 34(11): 1794-1808.
pmid: 30499275
AI Shiqi, ZHAO Yiquan, SUN Zhiyuan, et al. Chang of bacterial community structure during cellulose degradation by the microbial consortium[J]. Chinese Journal of Biotechnology, 2018, 34(11): 1794-1808.
doi: 10.13345/j.cjb.180061 pmid: 30499275
[20] 胡佳丹, 张玉苍, 林昭华, 等. 皮氏罗尔斯顿菌对香蕉假茎脱胶研究[J]. 食品科技, 2017, 42(12): 23-29.
HU Jiadan, ZHANG Yucang, LIN Zhaohua, et al. Effect on bio-degumming of banana pseudo-stem by Ralstonia sp. ZLXH-4[J]. Food Science and Technology, 2017, 42(12): 23-29.
[21] 刘孟峦. 竹材中非纤维素物质去除的环保工艺与方法探讨[D]. 北京: 北京服装学院, 2012: 50-53.
LIU Mengluan. The environmental-friendly method and process of removing non-cellulose matters from bamboo for textile fiber[D]. Beijing: Beijing Institute of Fashion Technology, 2012: 50-53.
[22] 何俊燕, 李明福, 连文伟, 等. 菠萝叶纤维超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(9): 83-89.
HE Junyan, LI Mingfu, LIAN Wenwei, et al. Ultrasonic-assisted chemical degumming process for making pineapple leaf fiber[J]. Journal of Textile Research, 2021, 42(9): 50-53.
[23] FU J J, LI Y, ZHANG Q, et al. High-temperature heating and microwave pretreatments: a new light in bamboo's enzymatic hydrolysis[J]. Thermal Science, 2016, 20(3): 999-1002.
[24] WANG C, TALLIAN C, SU J, et al. Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder[J]. Plos One, 2018. DOI: 10.1371/journal.pone.0197537.
doi: 10.1371/journal.pone.0197537
[25] BHOLAY A, BORKHATARIA B V, JADHAV P U, et al. Bacterial lignin peroxidase: a tool for biobleaching and biodegradation of industrial effluents[J]. Universal Journal of Environmental Research and Technology, 2012, 2(1): 58-64.
[26] MAO K, CHEN H, QI H, et al. Visual degumming process of ramie fiber using a microbial consortium RAMCD407[J]. Cellulose, 2019, 26(5): 3513-3528.
doi: 10.1007/s10570-019-02288-1
[27] ADAMU M, DAHIRU M, GARBA L. Microorganisms involved in the bioremediation of pentachlorophenol and lignin discharged by the pulp and paper industry[J]. Journal of Environmental Bioremediation and Toxicology, 2020, 3(2): 21-25.
doi: 10.54987/jebat.v3i2.547
[28] 朱盛伟. 肠杆菌降解木质素机制的研究[D]. 北京: 北京化工大学, 2019: 27-39.
ZHU Shengwei. Study on the mechanism of lignin degradation by Enterobacter ludwigh[D]. Beijing: Beijing University of Chemical Technology, 2019: 27-39.
[29] CHANDRA R, BHARAGAVA R N. Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products[J]. Journal of Environmental Biology, 2013, 34(6): 991-999.
pmid: 24555327
[30] LEE S, KANG M, BAE J H, et al. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives[J]. Frontiers in Bioengineering and Biotechnology, 2019.DOI: 10.3389/fbioe.2019.00209.
doi: 10.3389/fbioe.2019.00209
[31] YADAV S, CHANDRA R. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry[J]. Journal of Environmental Sciences, 2015, 33: 229-238.
doi: 10.1016/j.jes.2015.01.018
[32] YANG Q, DUAN S, CHENG L, et al. Proteomic characterization of Bacillus subtilis on bio-degumming of ramie bast[J]. Journal of Natural Fibers, 2022, 19(15): 9886-9903.
doi: 10.1080/15440478.2021.1993416
[33] 吴亚, 刘一, 舒潼, 等. 芽孢杆菌苎麻脱胶动态过程分析[J]. 生物技术通报, 2021, 37(21): 1-7.
WU Ya, LIU Yi, SHU Tong, et al. Analysis on the dynamic process of Bacillus ramie degumming[J]. Biotechnology Bulletin, 2021, 37(12): 1-7.
[34] HASAN R, AKTAR N, KABIR S M T, et al. Pectinolytic bacterial consortia reduce jute retting period and improve fibre quality[J]. Scientific Reports, 2020, 10(1): 1-9.
doi: 10.1038/s41598-019-56847-4
[35] HOSSAIN M M, SIDDIQUEE S, KUMAR V. Critical factors for optimum biodegradation of bast fiber’s gums in bacterial retting[J]. Fibers, 2021.DOI: 10.3390/fib9080052.
doi: 10.3390/fib9080052
[1] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[2] 薛卫巍;翟秋梅;薛永常;郑来久. 罗布麻微生物脱胶工艺优化[J]. 纺织学报, 2009, 30(04): 80-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!