纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 96-103.doi: 10.13475/j.fzxb.20211202308
李宇1,2, 傅佳佳1,2(), CAVACO-PAULO Artur1,2, 王鸿博1,2, 高卫东1,2
LI Yu1,2, FU Jiajia1,2(), CAVACO-PAULO Artur1,2, WANG Hongbo1,2, GAO Weidong1,2
摘要:
为缩短竹材生物脱胶时间,得到能够满足后道加工的工艺纤维(竹束),并提高成品质量,探索了温水沤竹过程中细菌菌群结构的演替规律及作用机制。采用高通量测序与传统可培养技术相结合的方法,确定了沤竹过程中的优势菌;并结合水沤过程中竹块的形态变化以及竹块与竹束的化学成分差异,分析了菌群在水沤脱胶过程中的作用。结果表明:竹材的水沤脱胶过程以木质素的降解为主,以竹粉为唯一碳源筛选得到的5 株菌株,在属水平上仅占总菌群的0.70%~3.21%,优势可培养菌种为黏质沙雷氏菌(Serratia marcescens)和枯草芽孢杆菌枯草亚种(Bacillus subtilis subsp. subtilis)。筛选获得的可培养菌种中缺少起发酵作用使竹块膨胀的菌种,因此,预处理-优势菌种复配的联合工艺可以作为一种提高竹脱胶效率的手段。
中图分类号:
[1] |
SHINOHARA Y, MISUMI Y, KUBOTA T, et al. Characteristics of soil erosion in a moso-bamboo forest of western Japan: comparison with a broadleaved forest and a coniferous forest[J]. Catena, 2019, 172: 451-460.
doi: 10.1016/j.catena.2018.09.011 |
[2] |
ZUO Y, LI W, LI P, et al. Preparation and characterization of polylactic acid-g-bamboo fiber based on in-situ solid phase polymerization[J]. Industrial Crops and Products, 2018, 123: 646-653.
doi: 10.1016/j.indcrop.2018.07.024 |
[3] | 熊伟, 潘贝贝, 宋卫卫, 等. 竹原纤维的性能及开发[J]. 林业机械与木工设备, 2018, 46(6): 32-35. |
XIONG Wei, PAN Beibei, SONG Weiwei, et al. Development and performance of bamboo fiber[J]. Forestry Machinery and Woodworking Equipment, 2018, 46(6): 32-35. | |
[4] | 梁盈春, 岳文侠. 竹彩棉内衣的发展与前景展望[J]. 纺织科技进展, 2019(5): 1-3. |
LIANG Yingchun, YUE Wenxia. Develpoment and prospect of bamboo colored cotton underwear[J] Progress in Textile Science in Technology, 2019(5): 1-3. | |
[5] | 周玲, 傅佳佳, 王鸿博. 涤/棉/竹浆纤维混色混纺仿毛织物风格评价[J]. 纺织学报, 2016, 37(5): 51-55. |
ZHOU Ling, FU Jiajia, WANG Hongbo. Evaluation on style of polyester /cotton /bamboo pulp fiber blended and color mixtured wool-like fabrics[J]. Journal of Textile Research, 2016, 37(5): 51-55. | |
[6] | 欧阳鹏飞, 张玉芳, 贾春紫, 等. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(1): 21-25. |
OUYANG Pengfei, ZHANG Yufang, JIA Chunzi, et al. Properties of regenerated fibers from bamboo pulp/ionic liquid combined system[J]. Journal of Textile Research, 2020, 41(1): 21-25. | |
[7] | SINGH B, DESSALEGN M Y. Effect analysis of extraction processes of bamboo fiber[J]. NVEO-Natural Volatiles and Essential Oils, 2021, 8(5): 4226-4246. |
[8] | 范宏玥, 陈礼辉, 苗庆显, 等. 毛竹竹原纤维的制备及其表征[J]. 林业机械与木工设备, 2020, 48(5): 37-41. |
FAN Hongyue, CHEN Lihui, MIAO Qingxian, et al. Preparation and characterization of natural moso bamboo fiber[J]. Forestry Machinery and Woodworking Equipment, 2020, 48(5): 37-41. | |
[9] | 王春红, 陈祯, 李园平, 等. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15. |
WANG Chunhong, CHEN Zhen, LI Yuanping, et al. Classified extraction and properties of bamboo fiber[J]. Journal of Textile Research, 2017, 38(11): 9-15. | |
[10] | 赵鹤, 苗庆显, 黄六莲, 等. 竹原长纤维制备及其增强聚丙烯复合材料研究[J]. 林业工程学报, 2021, 6(5): 96-103. |
ZHAO He, MIAO Qingxian, HUANG Liulian, et al. Preparation of long bamboo fiber and its reinforced polypropylene membrane composites[J]. Journal of Forestry Engineering, 2021, 6(5): 96-103. | |
[11] | GOKARNESHAN N, KHA A. Antimicrobial properties of bamboo fibres[J]. Biomedical Journal of Scientific and Technical Research, 2020, 32(5): 25299-25302. |
[12] | 马顺彬. 竹浆纤维色织经起花织物的设计与生产[J]. 上海纺织科技, 2018, 46(3): 33-34. |
MA Shunbin. Design and production of bamboo pulp fiber yarn-dyed warp figured fabric[J]. Shanghai Textile Science and Technology, 2018, 46(3): 33-34. | |
[13] |
BLEUZE L, LASHERMES G, ALAVOINE G, et al. Tracking the dynamics of hemp dew retting under controlled environmental conditions[J]. Industrial Crops and Products, 2018, 123: 55-63.
doi: 10.1016/j.indcrop.2018.06.054 |
[14] |
SUMMERSCALE J. A review of bast fibres and their composites: part 4: organisms and enzyme processes[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI: 10.1016/j.compositesa.2020.106149.
doi: 10.1016/j.compositesa.2020.106149 |
[15] | 诸葛荣夏. 腐浆中木质纤维降解菌的筛选[D]. 南京: 南京林业大学, 2020: 27-28. |
ZHUGE Rongxia. Screening and construction of compound microbial system of lignin and cellulose degrading bacteria from slime of paper mill[D]. Nanjing: Nanjing Forestry University, 2020: 27-28. | |
[16] |
杨静, 蒋剑春, 张宁, 等. 微生物降解木质素的研究进展[J]. 生物质化学工程, 2021, 55(3): 62-70.
doi: 10.3969/j.issn.1673-5854.2021.03.010 |
YANG Jing, JIANG Jianchun, ZHANG Ning, et al. Research progress on lignin degradation by micro-organism[J]. Biomass Chemical Engineering, 2021, 55(3): 62-70.
doi: 10.3969/j.issn.1673-5854.2021.03.010 |
|
[17] |
WANG J X, LIANG J D, GAO S. Biodegradation of lignin monomers vanillic, p-coumaric, and syringic acid by the bacterial strain, Sphingobacterium sp. HY-H[J]. Current Microbiology, 2018, 75(9): 1156-1164.
doi: 10.1007/s00284-018-1504-2 |
[18] | 杨艳华. 农作物秸秆高效降解菌的筛选与菌剂制备研究[D]. 杭州: 浙江农林大学, 2020: 15-20, 28. |
YANG Yanhua. Study on screening of efficiency straw-degrading strains and preparation of decomposed inoculants for crop straw[D]. Hangzhou: Zhejiang A&F University, 2020: 15-20, 28. | |
[19] |
艾士奇, 赵一全, 孙志远, 等. 复合菌系降解纤维素过程中微生物群落结构的变化[J]. 生物工程学报, 2018, 34(11): 1794-1808.
pmid: 30499275 |
AI Shiqi, ZHAO Yiquan, SUN Zhiyuan, et al. Chang of bacterial community structure during cellulose degradation by the microbial consortium[J]. Chinese Journal of Biotechnology, 2018, 34(11): 1794-1808.
doi: 10.13345/j.cjb.180061 pmid: 30499275 |
|
[20] | 胡佳丹, 张玉苍, 林昭华, 等. 皮氏罗尔斯顿菌对香蕉假茎脱胶研究[J]. 食品科技, 2017, 42(12): 23-29. |
HU Jiadan, ZHANG Yucang, LIN Zhaohua, et al. Effect on bio-degumming of banana pseudo-stem by Ralstonia sp. ZLXH-4[J]. Food Science and Technology, 2017, 42(12): 23-29. | |
[21] | 刘孟峦. 竹材中非纤维素物质去除的环保工艺与方法探讨[D]. 北京: 北京服装学院, 2012: 50-53. |
LIU Mengluan. The environmental-friendly method and process of removing non-cellulose matters from bamboo for textile fiber[D]. Beijing: Beijing Institute of Fashion Technology, 2012: 50-53. | |
[22] | 何俊燕, 李明福, 连文伟, 等. 菠萝叶纤维超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(9): 83-89. |
HE Junyan, LI Mingfu, LIAN Wenwei, et al. Ultrasonic-assisted chemical degumming process for making pineapple leaf fiber[J]. Journal of Textile Research, 2021, 42(9): 50-53. | |
[23] | FU J J, LI Y, ZHANG Q, et al. High-temperature heating and microwave pretreatments: a new light in bamboo's enzymatic hydrolysis[J]. Thermal Science, 2016, 20(3): 999-1002. |
[24] |
WANG C, TALLIAN C, SU J, et al. Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder[J]. Plos One, 2018. DOI: 10.1371/journal.pone.0197537.
doi: 10.1371/journal.pone.0197537 |
[25] | BHOLAY A, BORKHATARIA B V, JADHAV P U, et al. Bacterial lignin peroxidase: a tool for biobleaching and biodegradation of industrial effluents[J]. Universal Journal of Environmental Research and Technology, 2012, 2(1): 58-64. |
[26] |
MAO K, CHEN H, QI H, et al. Visual degumming process of ramie fiber using a microbial consortium RAMCD407[J]. Cellulose, 2019, 26(5): 3513-3528.
doi: 10.1007/s10570-019-02288-1 |
[27] |
ADAMU M, DAHIRU M, GARBA L. Microorganisms involved in the bioremediation of pentachlorophenol and lignin discharged by the pulp and paper industry[J]. Journal of Environmental Bioremediation and Toxicology, 2020, 3(2): 21-25.
doi: 10.54987/jebat.v3i2.547 |
[28] | 朱盛伟. 肠杆菌降解木质素机制的研究[D]. 北京: 北京化工大学, 2019: 27-39. |
ZHU Shengwei. Study on the mechanism of lignin degradation by Enterobacter ludwigh[D]. Beijing: Beijing University of Chemical Technology, 2019: 27-39. | |
[29] |
CHANDRA R, BHARAGAVA R N. Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products[J]. Journal of Environmental Biology, 2013, 34(6): 991-999.
pmid: 24555327 |
[30] |
LEE S, KANG M, BAE J H, et al. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives[J]. Frontiers in Bioengineering and Biotechnology, 2019.DOI: 10.3389/fbioe.2019.00209.
doi: 10.3389/fbioe.2019.00209 |
[31] |
YADAV S, CHANDRA R. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry[J]. Journal of Environmental Sciences, 2015, 33: 229-238.
doi: 10.1016/j.jes.2015.01.018 |
[32] |
YANG Q, DUAN S, CHENG L, et al. Proteomic characterization of Bacillus subtilis on bio-degumming of ramie bast[J]. Journal of Natural Fibers, 2022, 19(15): 9886-9903.
doi: 10.1080/15440478.2021.1993416 |
[33] | 吴亚, 刘一, 舒潼, 等. 芽孢杆菌苎麻脱胶动态过程分析[J]. 生物技术通报, 2021, 37(21): 1-7. |
WU Ya, LIU Yi, SHU Tong, et al. Analysis on the dynamic process of Bacillus ramie degumming[J]. Biotechnology Bulletin, 2021, 37(12): 1-7. | |
[34] |
HASAN R, AKTAR N, KABIR S M T, et al. Pectinolytic bacterial consortia reduce jute retting period and improve fibre quality[J]. Scientific Reports, 2020, 10(1): 1-9.
doi: 10.1038/s41598-019-56847-4 |
[35] |
HOSSAIN M M, SIDDIQUEE S, KUMAR V. Critical factors for optimum biodegradation of bast fiber’s gums in bacterial retting[J]. Fibers, 2021.DOI: 10.3390/fib9080052.
doi: 10.3390/fib9080052 |
[1] | 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8. |
[2] | 薛卫巍;翟秋梅;薛永常;郑来久. 罗布麻微生物脱胶工艺优化[J]. 纺织学报, 2009, 30(04): 80-84. |
|