纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 108-114.doi: 10.13475/j.fzxb.20211108707

• 染整与化学品 • 上一篇    下一篇

基于漆酶催化角蛋白头发纤维生物修复染色

贾维妮1,2(), 王涛1, 鲍杰1, 梁志结1, 王海峰1   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.国家先进印染技术创新中心, 山东 泰安 271000
  • 收稿日期:2021-11-22 修回日期:2023-01-16 出版日期:2023-04-15 发布日期:2023-05-12
  • 作者简介:贾维妮(1977—),女,副教授,博士。主要研究方向为生态纺织品研究与开发。E-mail:jia.wn@126.com
  • 基金资助:
    南通市科技计划项目(JC2020126);江苏省高等学校大学生创新实验计划项目(202010304057Z);南通大学横向合作项目(19ZH590);南通大学横向合作项目(19ZH591);南通大学横向合作项目(20ZH104);江苏省产学研合作项目(BY2020556)

Bioremediation dyeing of keratin hair fibers with dopamine hydrochloride catalyzed by laccase

JIA Weini1,2(), WANG Tao1, BAO Jie1, LIANG Zhijie1, WANG Haifeng1   

  1. 1. College of Textile and Garment, Nantong University, Nantong, Jiangsu 226019, China
    2. National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian, Shandong 271000, China
  • Received:2021-11-22 Revised:2023-01-16 Published:2023-04-15 Online:2023-05-12

摘要:

针对目前常规染发过程中氧化剂及染发剂对角蛋白头发纤维的损伤及易对人产生过敏等问题,采用漆酶催化盐酸多巴胺聚合生色并对角蛋白头发纤维进行原位染色,以达到生态安全、环保健康、生物修复、染色牢固的角蛋白头发纤维染黑效果。借助测色配色仪、万能材料试验机、扫描电子显微镜、傅里叶变换红外光谱仪和纺织品防紫外性能测试仪等对染色角蛋白头发纤维的结构和性能进行了表征。结果表明:原位染色角蛋白头发纤维表面色深值为23.9,表观颜色色相为黑色,防紫外线性能也得到提高,紫外线防护系数为100+,染色后角蛋白头发纤维断裂强力提高7.8%;漆酶催化盐酸多巴胺聚合生成聚多巴胺色素,且附着于角蛋白头发纤维表面,与角蛋白头发纤维结合牢固,染色角蛋白头发纤维的干、湿摩擦色牢度及耐洗变色牢度分别达到4级、3~4级及4~5级。

关键词: 角蛋白头发纤维, 染色, 漆酶, 催化, 盐酸多巴胺, 修复

Abstract:

Objective In order to solve the problems of keratin hair fibers damage and allergy caused by the oxidant and keratin hair colorants in the current routine of keratin hair fibers dyeing process, the keratin hair fibers were dyed in situ by laccase catalyzed polymerization of dopamine hydrochloride to achieve blackening effect, accompanied by ecological restoration, health and fastness features.
Method The in-situ dyeing process was performed in one step with 2.5 g/L dopamine hydrochloride, 0.9 U/mL laccase at 50 ℃ for 4 h. Factors, such as reaction time, temperature and laccase concentration, were investigated on the influence on determining the binding of pigment molecule to keratin hair fibers. Besides, the structure and properties of the dyed keratin hair fibers were characterized and analyzed by color parameter, single fiber strength, Fourier-transform infrared spectroscopy, scanning electron microscope, anti-UV and color fastness test.
Results To understand the effect of pre-bleaching on keratin hair fibers coloring, the untreated natural white keratin hair fibers and white keratin hair fibers pretreated with hydrogen peroxide were dyed (Fig. 5, Fig. 6). After the pre-processing, more binding points were exposed to facilitate the penetration of the pigment formed in the in-situ dyeing process into the keratin hair fibers, reaching a darker color and good fastness. The results of SEM and K/S value as well as color fastness showed that the dyeing process was more suitable to the pretreated white keratin hair fibers, owing to the weaken cuticle layer of pretreated white keratin hair fibers. After dyeing, the cuticle layer of the keratin hair fibers was not clear, attributing to the uniform and dense polydopamine coating formed by a reaction catalyzed by laccase covering on the surface of the keratin hair fibers (Fig. 7). Comparing to the IR spectra of keratin hair fibers before dyeing (Fig. 8), fibers after dyeing showed a broad peak at 3 273 cm-1, indicating that there were polydopamine pigments on the surface of keratin hair fibers. Peaks at 1 634 and 2 921 cm-1 could be ascribed to the stretching vibration of C=O and C—H, revealing that the coupling reaction occurred between benzene ring carbon radicals. On the other hand, the K/S value of keratin hair fibers after dyeing reached to 22.1, while the K/S value is 21.7 after treated with DMF. The slight variation indicated pigment combines with keratin hair fibers by covalent bonds. Therefore, the color fastness on rubbing stress under dry and wet conditions were very well and reached 4 and 3-4, respectively. The color fastness on washing can reaches 4-5. Besides, owing to the formation of polydopamine on the surface of the keratin hair fibers, the dyed keratin hair fibers exhibited excellent anti-ultraviolet property (UPF: 100+, Fig. 9). In addition, in order to test the mechanical robustness, the tensile strengths of non-dyed and dyed keratin hair fibers were reported with a 7.8 % increase, which results from the generation of polydopamine pigment. It is clear that the pigment plays a certain role in repairing the damaged spots of the bleached keratin hair fibers, further improving the strength of keratin hair fibers.
Conclusion Laccase was chosen to be a catalyst for the oxidative polymerization of dopamine hydrochloride to produce polymeric colorants for the dyeing of keratin fibers and shows a dark black color. The colored keratin hair fibers were characterized fully. Besides, the dyed keratin hair fibers exhibits excellent anti-ultraviolet property, color fastness on rubbing stress and washing, which can be attributed to the polydopamine coating and the strong covalent binding between polydopamine and keratin hair fibers. It is important to note that the dyed keratin hair fibers undergoing chemical modification remains the natural physical feature. The proposed eco-friendly enzymatic polymerization provides an efficient and green strategy for biological dyeing of keratin hair fibers. These good characteristics make the dyeing strategy a promising candidate for textile dyeing and even other field. Therefore, this study could lead to the successful development of biologically dyed materials with multiple functions.

Key words: keratin hair fiber, dyeing, laccase, catalysis, hydroxytyramine, repairing

中图分类号: 

  • TS195

图1

5种方法染色角蛋白头发纤维照片"

表1

不同方法处理角蛋白头发纤维颜色参数"

染色方
法编号
K/S L a b C h
原样 9.2 41.321 5.918 13.244 23.001 70.994
1 12.9 31.556 8.810 13.156 28.450 65.252
2 9.3 40.013 4.679 11.592 19.714 72.235
3 17.2 22.471 4.224 5.517 12.332 58.204
4 23.9 14.631 0.989 0.7901 2.364 40.620
5 13.1 32.884 5.462 10.691 20.417 68.659

图2

不同时间染色角蛋白头发纤维照片"

表2

不同时间染色角蛋白头发纤维颜色参数"

时间/h K/S L a b C h
原样 10.0 40.043 5.502 12.719 22.203 71.501
1 12.6 35.132 3.452 10.195 17.865 74.910
2 17.0 25.889 2.658 6.329 12.125 70.936
4 21.1 19.734 2.706 4.086 9.032 60.946
6 22.1 19.385 2.755 4.259 9.480 61.740
8 24.2 19.085 2.856 4.507 10.124 62.527
12 23.4 18.356 2.655 3.749 8.617 59.271
24 23.8 15.625 1.303 1.352 3.494 48.683

图3

不同温度染色角蛋白头发纤维照片"

表3

不同温度染色角蛋白头发纤维的颜色参数"

温度/℃ K/S L a b C h
原样 8.8 44.297 6.826 14.899 25.647 70.821
30 17.1 23.550 3.372 5.881 12.173 64.985
40 17.7 22.224 3.168 5.101 10.810 62.858
50 19.6 19.855 2.671 3.951 8.726 60.295
60 19.6 17.689 1.595 2.033 4.705 54.892
70 15.5 21.689 2.993 4.129 8.976 58.418

图4

不同漆酶浓度染色角蛋白头发纤维照片"

表4

不同漆酶浓度下染色角蛋白头发纤维的颜色参数"

漆酶浓度/
(U·mL-1)
K/S L a b C h
原样 10.3 38.554 6.640 13.191 24.140 69.242
0.18 17.6 24.188 4.282 6.950 14.766 64.146
0.54 18.5 23.035 3.847 6.304 13.479 64.086
0.90 20.8 16.970 1.627 2.157 5.020 56.175
1.26 20.4 17.324 1.707 2.237 5.192 55.895
1.80 20.0 22.138 4.165 6.193 13.730 62.032

图5

未预处理和双氧水预处理自然白发纤维染色照片"

图6

未预处理自然白发纤维和双氧水预处理白发纤维SEM照片"

图7

角蛋白头发纤维SEM照片(×500)"

图8

角蛋白头发纤维的红外光谱"

图9

角蛋白头发纤维防紫外线性能"

[1] 中禾. 染发剂怎样使头发染色[J]. 家庭科技, 2005(11): 20-21.
ZHONG He. How does hair dye make hair colora-tion[J]. Technology in the Home, 2005(11):20-21.
[2] 肖子英, 广丰. 苯胺类染发剂与人体健康[J]. 中国化妆品:专业版, 2007(9):90-93.
XIAO Ziying, GUANG Feng. Aniline hair colorants and human health[J]. Chinese Cosmetics: Professional Edition, 2007(9):90-93.
[3] 刘跃华, 陈冰松, 郭玉坤. 化学制剂对头发损伤的扫描电镜观察[J]. 电子显微学报, 2005, 24(4):412.
LIU Yuehua, CHEN Bingsong, GUO Yukun. Scanning electron microscope observation of hair injury caused by chemical agents[J]. Journal of Electron Microscopy, 2005, 24(4):412.
[4] 杨兆弘. 染发剂的安全性研究进展[J]. 工业卫生与职业病, 2011, 37(4):250-253.
YANG Zhaohong. Research progress on safety of hair colorants[J]. Industrial Hygiene and Occupational Diseases, 2011, 37(4):250-253.
[5] 石荣莹, 刘志兵, 张蕾, 等. 天然植物染发剂[J]. 上海化工, 2005(6):25-29.
SHI Rongying, LIU Zhibing, ZHANG Lei, et al. Natural plant hair dye[J]. Shanghai Chemical Industry, 2005(6):25-29.
[6] 贾维妮, 范雪荣, 王强. 漆酶对蚕丝织物的生物染色[J]. 纺织学报, 2013, 34(12):66-70.
JIA Weini, FAN Xuerong, WANG Qiang. Biological dyeing of silk fabric by laccase[J]. Textile Research Journal, 2013, 34(12):66-70.
[7] JIA Weini, WANG Qiang, FAN Xuerong, et al. Laccase-mediated in situ oxidation of dopa for bio-inspired coloration of silk fabric[J]. RSC Advances, 2017, 7(21):12977-12983.
doi: 10.1039/C6RA25533G
[8] JIA Weini, LI Shirong, LUO Zhengxin, et al. Laccase-mediated in situ oxidation of dopamine for dyeing of human hair[J]. Fibers and Polymers, 2021, 22(1):141-148.
doi: 10.1007/s12221-021-9012-6
[9] PETRAN Anca, RADOSTAW MrÓwczyński, FILIP Claudiu, et al. Melanin-like polydopa amides-synthesis and application in functionalization of magnetic nanoparticles[J]. Polymer Chemistry, 2015, 6(11):145-149.
[10] 卢蓉, 夏黎明. 漆酶氧化还原介质系统的作用机理及其应用[J]. 纤维素科学与技术, 2004, 12(1):37-44.
LU Rong, XIA Liming. Mechanism and application of laccase REDOX medium system[J]. Cellulose Science and Technology, 2004, 12(1):37-44.
[11] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2):212-219.
LIU Zongguang, QU Shuxin, WENG Jie. Application of polydopamine in surface modification of biomate-rials.[J]. Progress in Chemistry, 2015, 27(2):212-219.
[12] 杨定国. 波谱分析基础及应用[M]. 北京: 中国纺织出版社, 1993:38.
YANG Dingguo. Spectral analysis and application[M]. Beijing: China Textile & Apparel Press, 1993:38.
[13] 戴晓雯, 盛李红, 慕轩, 等. 头发的ATR-FTIR检测[J]. 光谱仪器与分析, 2003 (4):27.
DAI Xiaowen, SHENG Lihong, MU Xuan, et al. ATR-FTIR detection of hair[J]. Spectral Instruments and Analysis, 2003 (4):27.
[14] 马骏, 刘让同. 单纤维强力与束纤维强力关系的探讨[J]. 棉纺织技术, 2006(10):19-22.
MA Jun, LIU Rangtong. Discussion on the relationship between single fiber strength and bundle fiber strength[J]. Cotton Textile Technology, 2006(10):19-22.
[1] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
[2] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[3] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(03): 111-118.
[4] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
[5] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[6] 苏淼, 周凯丽, 段怡婷, 鲁佳亮, 杨丽梅. 基于色度测量的乾隆色谱色彩特征研究[J]. 纺织学报, 2023, 44(03): 132-138.
[7] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[8] 陈明星, 张威, 王新亚, 肖长发. 纳米纤维基催化材料的制备及其在环境领域中的应用研究进展[J]. 纺织学报, 2023, 44(01): 209-218.
[9] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[10] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[11] 张福沐, 刘端武, 胡跃明. 染色机助剂智能配送系统的构建及实践[J]. 纺织学报, 2022, 43(11): 179-187.
[12] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
[13] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[14] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[15] 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!