纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 16-23.doi: 10.13475/j.fzxb.20220401908

• 纤维材料 • 上一篇    下一篇

负载WO3的细菌纤维素/Au膜制备及其催化性能

周堂, 汪邓兵, 赵磊, 刘祖一, 凤权()   

  1. 安徽工程大学 安徽省先进纤维材料工程研究中心, 安徽 芜湖 241000
  • 收稿日期:2022-04-06 修回日期:2023-01-12 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 凤权(1975—),教授,博士。主要研究方向为功能性纳米纤维膜的制备。E-mail:fengquan@ahpu.edu.cn
  • 作者简介:周堂(1998—),男,硕士生。主要研究方向为纳米纤维材料的制备。
  • 基金资助:
    安徽省高校自然科学研究资助项目(KJ2016SD04);安徽省自然科学基金面上项目(2008085ME139)

Preparation of bacterial cellulose/Au film loaded with tungsten trioxide and its catalytic performance

ZHOU Tang, WANG Dengbing, ZHAO Lei, LIU Zuyi, FENG Quan()   

  1. Anhui Engineering Research Center of Advanced Fibrous Materials, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2022-04-06 Revised:2023-01-12 Published:2023-04-15 Online:2023-05-12

摘要:

为开发一种新型纳米纤维材料用于催化降解抗生素废水,通过化学还原法在分散的细菌纤维素(BC)纳米纤维上沉积Au纳米颗粒,然后以此为载体采用真空辅助过滤方法形成均匀负载纳米WO3光催化材料的 BC/Au-WO3 纳米纤维膜。利用扫描电子显微镜和X射线衍射仪分析样品的组成结构和表观形貌,并对其进行紫外-可见光吸收光谱、交流阻抗、力学性能、光催化和光电催化测试。结果表明:BC纳米纤维可对WO3颗粒起到良好的柔性支撑作用,同时Au纳米颗粒的加入可降低材料的电荷转移阻抗并增强光吸收能力,从而提高其光催化降解性能;相对于单一的光催化反应,光电催化反应可加速降解反应并能提高降解率;在2.0 V附加电压和150 W氙灯下BC/Au-WO3在3 h 内对盐酸四环素的催化降解率可提高至78.4%。

关键词: 三氧化钨, 细菌纤维素, 光电催化, 纳米纤维膜, 抗生素废水降解, Au纳米颗粒

Abstract:

Objective Highly toxic and refractory trace antibiotics in agricultural and medical wastewater seriously affect the ecological environment, which makes it necessary to develop efficient antibiotic removal methods. Photocatalytic technology can use solar energy to degrade pollutants in water. However, in most studies, photocatalysts are usually used in powder form for photocatalytic degradation of pollutants, which is difficult to remove from water. This research sets out to investigate the natural nanofiber network of bacterial cellulose (BC) as a support skeleton for supporting nano-catalytic materials, with potential applications in water purification.
Method Biocultured bacterial cellulose nanofiber membranes were made into nanofiber dispersion, and Au nanoparticles were deposited on the dispersed nanofibers by chemical reduction to obtain flexible BC/Au conductive nanofiber materials. After that, the tungsten trioxide (WO3) photocatalyst was fixed by adsorption method, and the BC/Au-WO3 nanofiber membrane was formed by vacuum-assisted filtration.
Results A large number of adherent WO3 nanoparticles were found on BC nanofibers, as a good flexible support role for photocatalytic materials (Fig. 2). BC showed standard cellulose crystals and the composite nanofibers show obvious diffraction peaks of Au and WO3. No other impurities were found in the sample by XRD (Fig. 3). The electrochemical impedance and mechanical test indicated that the addition of Au could improve the electron transfer resistance and mechanical properties of nanofiber membrane and the interface charge transfer impedance of BC/Au nanofiber membrane was 32.353 Ω (Fig. 4). The light absorption capacity of BC/Au-WO3 nanofiber membrane for visible light was improved with the addition of Au, and there was a distinct characteristic absorption peak at 550 nm, consistent with the local surface plasmon resonance effect of Au nanoparticles in the visible light (Fig. 5). In this work, tetracycline hydrochloride was used as the target substrate to study the catalytic degradation of nanofiber membrane. The results showed that the addition of Au was beneficial to improve the photocatalytic degradation rate of the material (Fig. 6(a)). The photocatalytic and photoelectrocatalytic degradation rates of tetracycline hydrochloride by nanofiber membrane in 3 h were 60.2% and 78.4%, respectively (Fig. 6(b)). Compared with photocatalytic degradation alone, the catalytic degradation efficiency was greatly improved after adding additional electric fields, and the photoelectrocatalytic efficiency was greater than the sum of the efficiency of photocatalysis and electrocatalysis (Fig. 6(c)). Coupling was shown between photocatalysis and electrocatalysis. With the addition of additional electric field, the photogenerated electrons generated by the photocatalytic reaction were controlled by the voltage and transferred from the fiber membrane side to the platinum electrode side through the external circuit, thus playing the role of separating the photogenerated electrons and hole pairs. In addition, BC/Au-WO3 nanofiber membrane also showed the good reusability, and the results showed that its catalytic degradation performance remained unchanged after 6 times of reuse (Fig. 6(d)).
Conclusion BC can play a good support role for WO3 as a three-dimensional biomass flexible skeleton. Au nanoparticles modification can effectively improve the photocatalytic efficiency of BC/Au-WO3 composite nanofiber membrane. After light radiation, the Au nanoparticles and the WO3 Photocatalyst on the nanofiber network can form Mott-Schottky barriers to trap photogenerated electrons, thus reducing the recombination of photcogenerated electron-hole pairs. Moreover, Au nanoparticles can generate local plasma resonance effects in visible light and inject thermal electrons into WO3 to improve photocatalytic efficiency. Under light excitation and additional electric field, the catalytic degradation rate of tetracycline hydrochloride by composite nanofiber membranes was greatly improved. This is because the directional movement of photogenerated electrons under an additional electric field can force photogenerated electron hole pairs to efficient separate. When the additional voltage is 2.0 V, the photocatalytic degradation rate of tetracycline hydrochloride can reach 78.4% within 3 h. Compared with the single photocatalytic reaction, photoelectric catalytic reaction can accelerate the reaction and improve the degradation rate, which has potential application value in the water treatment of antibiotic.

Key words: tungsten trioxide, bacterial cellulose, photoelectric catalysis, nanofiber film, degradation of antibiotic wastewater, Au nanoparticle

中图分类号: 

  • TS102

图1

BC/Au-WO3纳米纤维膜的制备示意图"

图2

纳米WO3 、BC、BC/Au 、BC/Au-WO3的SEM照片"

图3

WO3、BC、BC/Au、BC/Au-WO3的XRD图"

图4

BC/Au纳米纤维膜的电化学性质和力学性能"

图5

BC、BC/Au和BC/Au-WO3的紫外-可见光吸收光谱图"

图6

纳米纤维膜的催化活性及重复使用性能"

[1] CHEN Y, YANG J, ZENG L, et al. Recent progress on the removal of antibiotic pollutants using photocatalytic oxidation process[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(8): 1401-1448.
doi: 10.1080/10643389.2020.1859289
[2] LOPES F C S M R, DA ROCHA M D G C, BARGIELA P, et al. Ag/TiO2 photocatalyst immobilized onto modified natural fibers for photodegradation of anthracene[J]. Chemical Engineering Science, 2020.DOI:10.1016/j.ces.2020.115939.
doi: 10.1016/j.ces.2020.115939
[3] 戴沈华, 翁良, 李冰艳, 等. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(8): 96-101.
DAI Shenhua, WENG Liang, LI Bingyan, et al. Preparation and properties of nano-ZnO loaded polyurethane/polyester foamed composite sponge[J]. Journal of Textile Research, 2021, 42(8): 96-101.
doi: 10.1177/004051757204200205
[4] AL-GHAFRI B, LAU W J, AL-ABRI M, et al. Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment[J]. Journal of Water Process Engineering, 2019. DOI:10.1016/j.jwpe.2019.100970.
doi: 10.1016/j.jwpe.2019.100970
[5] SHAH N, UL-ISLAM M, KHATTAK W A, et al. Overview of bacterial cellulose composites: a multipurpose advanced material[J]. Carbohydr Polym, 2013, 98(2): 1585-1598.
doi: 10.1016/j.carbpol.2013.08.018
[6] DARIA C-J, ANNA $\mathrm{\ddot{Z}}$, ADAM J, et al. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings[J]. Carbohydrate Polymers, 2021. DOI:10.1016/j.carbpol.2020.117247.
doi: 10.1016/j.carbpol.2020.117247
[7] SHAO Y, FENG C P, DENG B W, et al. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant[J]. Nano Energy, 2019, 62: 620-627.
doi: 10.1016/j.nanoen.2019.05.078
[8] CHEN Y Y, WANG L H, SUN H Y, et al. Self-assembling TiO2 on aminated graphene based on adsorption and catalysis to treat organic dyes[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.147889.
doi: 10.1016/j.apsusc.2020.147889
[9] YANG J, SONG G, ZHOU L, et al. Highly sensitively detecting tetramethylthiuram disulfide based on synergistic contribution of metal and semiconductor in stable Ag/TiO2 core-shell SERS substrates[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.147744.
doi: 10.1016/j.apsusc.2020.147744
[10] BOYADJIEV S I, KERI O, BARDOS P, et al. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing[J]. Applied Surface Science, 2017, 424: 190-197.
doi: 10.1016/j.apsusc.2017.03.030
[11] LIU S, GAO C, LIU Y, et al. Synthesis and photoluminescence mechanism of porous WO3 and WO3/Fe2W3O12 composite materials[J]. Russian Journal of Physical Chemistry A, 2021, 95(13): 2699-2707.
doi: 10.1134/S0036024421130124
[12] FUKUMURA T, SAMBANDAN E, YAMASHITA H. Synthesis and VOC degradation ability of a CeO2/WO3 thin-layer visible-light photocatalyst[J]. Materials Research Bulletin, 2017, 94: 493-499.
doi: 10.1016/j.materresbull.2017.07.003
[13] MOHITE S V, GANBAVLE V V, RAJPURE K Y. Photoelectrochemical and photocatalytic activities of bilayered TiO2/Ga:WO3 photoelectrode by spray pyrolysis technique[J]. Materials Research Bulletin, 2017, 95: 491-496.
doi: 10.1016/j.materresbull.2017.06.043
[14] MEMON A A, ARBAB A A, PATIL S A, et al. Synthesis of solution processed f-CNT@Bi2S3 hybrid film coated linen fabric as a free-standing textile structured photo catalyst[J]. Applied Catalysis a-General, 2018, 566: 87-95.
doi: 10.1016/j.apcata.2018.06.015
[15] HU C, WANG M S, CHEN C H, et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment[J]. Journal of Membrane Science, 2019, 580: 1-11.
doi: 10.1016/j.memsci.2019.03.012
[16] WANG Q Z, ZHENG L H, CHEN Y T, et al. Synthesis and characterization of novel PPy/Bi2O2CO3 composite with improved photocatalytic activity for degradation of Rhodamine-B[J]. Journal of Alloys and Compounds, 2015, 637: 127-132.
doi: 10.1016/j.jallcom.2015.02.201
[17] DAS A, DAGAR P, KUMAR S, et al. Effect of Au nanoparticle loading on the photo-electrochemical response of Au-P25-TiO2 catalysts[J]. Journal of Solid State Chemistry, 2020. DOI:10.1016/j.jssc.2019.121051.
doi: 10.1016/j.jssc.2019.121051
[18] PENNINGTON A M, PITMAN C L, DESARIO P A, et al. Photocatalytic CO oxidation over nanoparticulate Au-modified TiO2 aerogels: the importance of size and intimacy[J]. ACS Catalysis, 2020, 10(24): 14834-14846.
doi: 10.1021/acscatal.0c03640
[19] MARTINS P, KAPPERT S, LE H N, et al. Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin[J]. Catalysts, 2020. DOI:10.3390/catal10020234.
doi: 10.3390/catal10020234
[20] WANG Z L, LAI L W, WANG Y C, et al. Preparation and enhanced photoelectrocatalytic properties of a three-dimensional TiO2-Au porous structure fabricated using superaligned carbon nanotube films[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31963-31975.
doi: 10.1016/j.ijhydene.2020.08.241
[21] ZHENG Z, NG Y H, TANG Y, et al. Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A[J]. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2020.128279.
doi: 10.1016/j.chemosphere.2020.128279
[22] MA B, YU N, XIN S, et al. Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation[J]. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2020.129242.
doi: 10.1016/j.chemosphere.2020.129242
[23] ZHOU T, ZHAO L, WU D S, et al. Uniformly assembled polypyrrole-covered bacterial cellulose/g-C3N4 flexible nanofiber membrane for catalytic degradation of tetracycline hydrochloride[J]. Journal of Water Process Engineering, 2022. DOI:10.1016/j.jwpe.2022.102775.
doi: 10.1016/j.jwpe.2022.102775
[24] 于舒睿, 王蓟, 杨继凯, 等. WO3/NiWO4复合薄膜的制备及其光电化学性能[J]. 半导体电, 2022, 43(1): 137-142.
YU Shurui, WANG Ji, YANG Jikai, et al. Preparation and photoelectrochemical properties of WO3/NiWO4 compositeFilm[J]. Semiconductor Optoelectronics, 2022, 43(1): 137-142.
[25] DO NASCIMENTO E S, PEREIRA A L S, BARROS M D, et al. TEMPO oxidation and high-speed blending as a combined approach to disassemble bacterial cellu-lose[J]. Cellulose, 2019, 26(4): 2291-2302.
doi: 10.1007/s10570-018-2208-2
[26] AMEDLOUS A, MAJDOUB M, AMATERZ E, et al. Synergistic effect of g-C3N4 nanosheets/Ag3PO4 microcubes as efficient n-p-type heterostructure based photoanode for photoelectrocatalytic dye degradation[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2021. DOI:10.1016/j.jphotochem.2020.113127.
doi: 10.1016/j.jphotochem.2020.113127
[27] WANG P, CAO Y, XU S, et al. Boosting the H2-evolution performance of TiO2/Au photocatalyst by the facile addition of thiourea molecules[J]. Applied Surface Science, 2020. DOI:10.1016/j.apsusc.2020.147420.
doi: 10.1016/j.apsusc.2020.147420
[28] MA B, YU N, XIN S, et al. Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation[J]. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2020.129242.
doi: 10.1016/j.chemosphere.2020.129242
[1] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[2] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[3] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[4] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[5] 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28.
[6] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[7] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[8] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[9] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[10] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[11] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[12] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[13] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[14] 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22.
[15] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!