纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 204-211.doi: 10.13475/j.fzxb.20210907408

• 机械与器材 • 上一篇    下一篇

基于快速自适应经验模态分解的高速经编机振动分析

陈志昊1, 包文杰1, 李富才1(), 静波1, 黄朝林2, 孙建文2   

  1. 1.上海交通大学 机械系统与振动国家重点实验室, 上海 200240
    2.常德纺织机械有限公司, 湖南 常德 415240
  • 收稿日期:2021-09-22 修回日期:2022-11-09 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 李富才(1976—),男,教授,博士。主要研究方向为结构健康监测、机械故障诊断、预测与健康管理,振动分析与处理技术及传感技术与信号处理。E-mail:fcli@sjtu.edu.cn
  • 作者简介:陈志昊(1997—),男,博士生。主要研究方向为机械系统的信号处理与故障诊断。
  • 基金资助:
    军科委基础加强计划重点基础研究项目(2019-JCJQ-ZD-133-00)

Vibration analysis of high speed warp knitting machine based on fast empirical mode decomposition

CHEN Zhihao1, BAO Wenjie1, LI Fucai1(), JING Bo1, HUANG Chaolin2, SUN Jianwen2   

  1. 1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Changde Textile Machinery Co., Ltd., Changde, Hunan 415000, China
  • Received:2021-09-22 Revised:2022-11-09 Published:2023-04-15 Online:2023-05-12

摘要:

针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模态函数(IMF),然后计算各IMF分量与原信号的相关性,结合经编机运动特点,判断其中相关性最大的本征模态函数为机构运动分量并去除,最后将剩余分量重组实现结构振动信号的提取。将该方法应用于经编机振动故障诊断中,对动态振动数据进行处理,结合静态固有频率测试,成功提取出与实际故障现象相同的信号频率特征,判断出经编机在高转速下振动过大的原因,为后续经编机振动优化提供了参考。

关键词: 高速经编机, 振动分析, 自适应经验模态分解, 相关性分析, 故障诊断

Abstract:

Objective Warp knitting machine is one of the most important machines used widely in the textile industry. Aiming at the problems that excessive vibration of a high-speed warp knitting machine at high speed and the overlapping of mechanism motion signal and structure vibration signal, which makes it difficult to separate fault characteristics, a vibration fault diagnosis method for high speed warp knitting machine based on fast empirical mode decomposition (FAEMD) algorithm is proposed.
Method Firstly, the original vibration signal was decomposed into finite intrinsic mode functions (IMFs) by FAEMD algorithm. Then, the correlation between each IMF component and the original signal was calculated. Combining with the motion characteristics of the warp knitting machine, an analysis was carried out to determine the most relevant intrinsic mode function and its removal. Finally, the remaining components are recombined to extract the structural vibration signal. The specific process is shown in Fig. 3.
Results The proposed method was applied to the vibration analysis of a high speed warp knitting machine. Abnormal sound caused by excessive vibration occurred when a certain type of high-speed warp knitting machine runs at the speed of 1 700 r/min, 1 900 r/min and 2 000 r/min. To tackle this, the location of measuring points and the directions of measuring signals were determined according to the structural characteristics of the warp knitting machine. The measuring points were bed, comb bed, slotted needle bed, needle core bed and settler sheet bed, and the directions were vertical and length(Fig. 5). Then static test was carried out to determine the natural frequencies of the main parts of the warp knitting machine in three directions i.e. length, front, back and vertical, before the dynamic test was carried out. The speed change started from 1 600 r/min and increased to 2 000 r/min at a 50 r/min step to obtain vibration signals of main components at different speeds. According to the structural characteristics of the drive crankshaft of the warp knitting machine(Fig. 6), the main frequency of analysis was determined to be three times the frequency of the speed. The original signal features and the features extracted by the traditional EMD algorithm were not consistent with the fault phenomena. The proposed method was applied to the vibration signals of warp knitting machines, and the signal features consistent with the fault phenomena were successfully extracted (Fig. 7). By combining the static test results with the dynamic test results, it was finally determined that the reason for the excessive vibration of the structure was that the frequency of the driving force was close to the natural frequency of the bed, the settler sheet bed and the comb bed in the vertical direction at some specific speed, so as to produce the resonance phenomenon.
Conclusion In order to solve the problem of excessive vibration of high-speed warp knitting machine at a specific speed, a new vibration analysis method of warp knitting machine is proposed in this paper. The FAEMD algorithm and Pearson correlation coefficient are innovated to remove the mechanism motion signals of warp knitting machine and keep the structural vibration signals for analysis. In practical application, it is found that for the same signals, the number of IMF decomposed by EMD algorithm is more than that obtained by FAEMD algorithm, and the correlation of signals is poor. This method can improve the problem of end-point effect and mode aliasing of traditional EMD algorithm, and can effectively extract the fault characteristics of vibration acceleration signal of warp knitting machine, which provides a feasible method for vibration fault diagnosis of warp knitting machine.

Key words: high-speed warp knitting machine, vibration analysis, fast empirical mode decomposition (FAEMD), correlation analysis, fault diagnosis

中图分类号: 

  • TS103

图1

FAEMD流程图"

图2

信号重构流程图"

图3

故障诊断方案"

表1

E2528/3H-290-E32型高速经编机主要部位的固有频率"

部位 X方向
(前后方向)
Y方向
(长度方向)
Z方向
(垂直方向)
床身 37、87 150 37、87
梳栉床 200 130 100
沉降片床 180 210 96
槽针床 215 234 240
针芯床 160 250 196

图4

各测点的振动信号(转速2 000 r/min,0.25 s)"

图5

各传感器安装位置与所测信号方向"

图6

经编机曲轴结构"

图7

垂直方向信号的3次谐波幅值随转速的变化趋势"

图8

梳栉床长度方向重构信号3次谐波幅值随转速的变化趋势"

表2

EMD与FAEMD分解结果对比"

分解
算法
信号分量 皮尔森相关系数
EMD IMF1-IMF5 0.151 8 0.152 2 0.377 1 0.879 3 0.663 6
EMD IMF6-IMF10 -0.094 5 0.001 9 0.005 3 0.001 7 0.006 4
FAEMD IMF1-IMF5 0.163 6 0.545 2 0.931 4 0.363 5 0.023 7

图9

不同的算法分解结果对比"

[1] 蒋高明. 现代经编工艺与设备[M]. 北京: 中国纺织出版社, 2002:1-20.
JIANG Gaoming. Modern warp knitting process and equipment[M]. Beijing: China Textile & Apparel Press, 2002:1-20.
[2] 宗平生. 中国经编业发展史回顾[J]. 针织工业, 2013(12): 1-7.
ZONG Pingsheng. Review of China's warp knitting industry development history[J]. Knitting Industries, 2013 (12): 1-7.
[3] 夏风林, 蒋高明, 葛明桥. 高速经编机电子横移系统运动精度分析[J]. 纺织学报, 2009, 30(3):106-110.
XIA Fenglin, JIANG Gaoming, GE Mingqiao. Moving precision analysis of electronic shogging system on high speed warp knitting machine[J]. Journal of Textile Research, 2009, 30(3): 106-110.
[4] 赵加洋, 曹清林, 赵红霞, 等. 多梳拉舍尔经编机振动与噪音分析及改进措施[J]. 针织工业, 2018(12): 20-22.
ZHAO Jiayang, CAO Qinglin, ZHAO Hongxia, et al. Analysis and improvement measure of vibration and noise of multi-bar raschel warp knitting machine[J]. Knitting Industries, 2018(12):20-22.
[5] 张琦, 夏风林, 刘念, 等. 经编机梳栉的横移振动分析[J]. 纺织学报, 2013, 34(7):121-125.
ZHANG Qi, XIA Fenglin, LIU Nian, et al. Analysis of shogging motion vibration of guide bars on warp knitting machines[J]. Journal of Textile Research, 2013, 34(7): 121-125.
[6] 赵加洋, 曹清林, 赵红霞, 等. RSM3/3多轴向经编机的动平衡研究[J]. 针织工业, 2018(3):25-28.
ZHAO Jiayang, CAO Qinglin, ZHAO Hongxia, et al. Study on dynamic balance of RSM3/3 multiaxial warp knitting machine[J]. Knitting Industries, 2018(3):25-28.
[7] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454:56-78.
[8] 刘林密, 曾庆松, 崔伟成, 等. 基于经验模态分解与差分包络谱的齿轮故障诊断[J]. 计算机测量与控制, 2021, 29(3):54-58.
LIU Linmi, ZENG Qingsong, CUI Weicheng, et al. Gear fault diagnosis based on empirical mode decomposition and differential envelope spectrum of pure frequency modulation signal[J]. Computer Measurement & Control, 2021, 29 (3): 54-58.
[9] 王涛, 胡定玉, 丁亚琦, 等. 基于经验模式分解和排列熵的轴承故障特征提取[J]. 噪声与振动控制, 2021, 41(1):77-81.
WANG Tao, HU Dingyu, DING Yaqi, et al. Bearing fault feature extraction based on empirical mode decomposition and permutation entropy[J]. Noise and Vibration Control, 2021, 41 (1): 77-81.
[10] 张韦, 张永, 骈晓琴, 等. 基于改进EMD样本熵和SVM的风机滚动轴承故障诊断[J]. 机电工程技术, 2021, 50(12):38-41,67.
ZHANG Wei, ZHANG Yong, PIAN Xiaoqin, et al. Fault diagnosis of rolling bearing based on improved EMD sample entropy and SVM[J]. Mechanical & Electrical Engineering Technology, 2021, 50(12):38-41,67.
[11] 张立智, 徐卫晓, 井陆阳, 等. 基于EMD-SVD和CNN的旋转机械故障诊断[J]. 振动.测试与诊断, 2020, 40(6):1063-1070,1228.
ZHANG Lizhi, XU Weixiao, JING Luyang, et al. Fault diagnosis of rotating machinery based on EMD-SVD and CNN[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(6):1063-1070,1228.
[12] 陈凯. 快速非平稳信号分析诊断与应用[D]. 上海: 上海交通大学, 2015:1-50.
CHEN Kai. Rapis analysis diagnosis and application of non-sationary signal[D]. Shanghai: Shanghai Jiao Tong University, 2015:1-50.
[13] 韦成龙, 周以齐, 李瑞, 等. 基于改进S变换和ICA的相关源分离方法[J]. 振动.测试与诊断, 2019, 39(4):852-859,910.
WEI Chenglong, ZHOU Yiqi, LI Rui, et al. Based on improved S-transform and ICA related source separation method[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39 (4): 852-859,910.
[1] 孙帅, 缪旭红, 张琦, 王瑾. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(03): 51-55.
[2] 裘玉英. 空转转数对空气层组织织物性能的影响[J]. 纺织学报, 2013, 34(11): 62-0.
[3] 张长欢, 陈丽华. 纺织品pH值不同检测标准间差异及检测结果相关性分析[J]. 纺织学报, 2012, 33(5): 46-49.
[4] 方园 夏凡甜 居婷婷. 基于UG的高速经编机槽针六连杆机构的建模[J]. 纺织学报, 2012, 33(12): 127-133.
[5] 夏风林;葛明桥;蒋高明. 高速经编机梳栉横移运动的优化设计[J]. 纺织学报, 2009, 30(05): 118-121.
[6] MENG Jianjun孟建军. 高速经编机凸轮从动件运动规律的模糊综合评价[J]. 纺织学报, 2008, 29(12): 100-102.
[7] 程军红. 基于Windows的织机主轴振动性能分析软件开发[J]. 纺织学报, 2005, 26(6): 93-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!