纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 24-31.doi: 10.13475/j.fzxb.20211109208

• 纤维材料 • 上一篇    下一篇

海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能

孙将皓, 邵彦峥, 魏春艳(), 王迎   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2021-11-22 修回日期:2022-06-07 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 魏春艳(1965—),女,教授,硕士。主要研究方向为天然纤维综合开发、纺织结构与功能材料。E-mail:weicy@dlpu.edu.cn
  • 作者简介:孙将皓(1996—),男,硕士生。主要研究方向为纺织结构与功能材料。
  • 基金资助:
    辽宁省自然科学基金指导计划项目(2019-ZD-0295)

Preparation and adsorption analysis of sodium alginate/graphene oxide microporous aerogel fiber

SUN Jianghao, SHAO Yanzheng, WEI Chunyan(), WANG Ying   

  1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2021-11-22 Revised:2022-06-07 Published:2023-04-15 Online:2023-05-12

摘要:

为提升海藻酸钠(SA)/氧化石墨烯(GO)复合纤维对阳离子染料的吸附性能及其力学性能,以轻质碳酸钙作为成孔剂,马来酸酐接枝氧化石墨烯(MAH-GO)微粒作为增强剂,SA作为基体,采用湿法纺丝与冷冻干燥法,经酸性置换制备SA/MAH-GO微孔气凝胶纤维,并对其化学结构、形貌和粒度进行分析,探讨了MAH-GO质量分数对微孔气凝胶纤维断裂强度的影响,采用吸附动力学及吸附等温线模型对吸附实验数据进行拟合分析。结果表明:MAH-GO质量分数为0.5%时,SA/MAH-GO微孔气凝胶纤维的拉伸断裂强度最优,为0.513 cN/dtex,与SA/GO气凝胶纤维断裂强度相比提高了11.51%,其吸附过程符合准二级吸附动力学模型,主要受到化学吸附机制控制,对亚甲基蓝最大吸附量可达2 400.66 mg/g。

关键词: 改性氧化石墨烯, 轻质碳酸钙, 海藻酸钠, 气凝胶, 吸附性能, 阳离子染料

Abstract:

Objective The pollution of dye wastewater to the environment is the main factor restricting the large-scale production of the textile industry. Sodium alginate (SA) and graphene oxide (GO) both have good adsorption on residual dyes in dye wastewater. This paper reports a research that combines sodium alginate and graphene oxide are for fiber spinning, and studies the adsorption of dye wastewater of the composite fiber for the optimal absorption effect and recovery of adsorbent materials.
Method In this research, graphene oxide was used as an additive, sodium alginate was used as the main material of the gel, where graphene oxide was grafted with maleic anhydride for modification. SA/MAH-GO (modified graphene oxide) composite adsorbent material was prepared by wet spinning, microscopic pore-forming, freeze-drying, and so on. Fourier infrared spectrometer, differential scanning calorimeter, scanning electron microscope, X-ray diffractometer, particle size analyzer and other instruments were used to test and characterize the product. Additionally, an ultraviolet spectrophotometer and a fiber tensile breaking strength meter were used to compare its adsorption properties and physical and mechanical properties.
Results At the microscopic level, the chemical structure and particle size of GO have changed after grafting with maleic anhydride. FT-IR test showed that the infrared spectrum of MAH-GO particles illustrated an ester base vibration peak at 1 101 cm-1, which proved that maleic anhydride was successfully grafted onto the GO surface lamellar (as shown in Fig. 1). After ultrasonic dispersion, the particle size of MAH-GO in the water medium is mainly distributed within 191.2 nm, much smaller than GO particle size (9 669.8 nm), and the dispersion of MAH-GO is obviously better than GO particle. The experimental results show that trace amounts of modified graphene oxide (MAH-GO) have a certain optimization effect on the physical and mechanical properties of SA/MAH-GO microporous aerogel fibers. On the other hand, the special structure of microporous aerogel fibers has improved its adsorption capacity of methylene blue dyes. When the mass fraction of MAH-GO is 0.5%, the maximum tensile breaking strength is 0.513 cN/dtex, the breaking strength is increased by 11.51% compared with unmodified GO, and the breaking strength is increased by 81.27% compared with the microporous SA aerogel fiber (as shown in Fig. 4). Microporous aerogel fibers containing 0.75% MAH-GO demonstrated a higher removal rate of methylene blue, and the removal rate is always above 80% in the mass concentration range of 200 mg/L to 1 800 mg/L, and the maximum adsorption capacity can reach 2 400.6 mg/g (as shown in Fig. 6 and 7).The fitting results of the quasi-secondary kinetic adsorption model and the Langmuir isotherm adsorption model prove that the adsorption process involves electron sharing or transfer between the adsorbent and the adsorbate.
Conclusion Composite adsorption materials have good development prospects for adsorption of polluted wastewater. The raw materials such as calcium carbonate particles and sodium alginate used in the preparation of micro-porous adsorption fiber are cheap. When the mass fraction of MAH-GO is controlled within 0.75%, the cost actual treatment of low concentration methylene blue pollutants can be further controlled. To sum up, there are some suggestions for the next research of this topic. Firstly, the organic solvent DMF is used in the esterification process of graphene oxide, which can be recycled by vacuum distillation, but it is time-consuming and energy-consuming. Environmental friendly solvents and modified catalytic methods such as ultraviolet photocatalysis should be selected. Secondly, besides the pore-forming method, mineral materials such as bentonite, montmorillonite and diatomite can also expose more potential adsorption sites for sodium alginate composites and improve the adsorption potential of composites for cations, which deserves further exploration.

Key words: modified graphene oxide, light calcium carbonate, sodium alginate, aerogel, adsorption performance, cationic dye

中图分类号: 

  • TS102.2

图1

MAH-GO、SA、SA/MAH-GO气凝胶红外光谱图"

图2

MAH-GO和GO粒径分布"

表1

粒径分布统计"

样品名称 D10% D50% D90%
MAH-GO 102.0 120.6 191.2
GO 5 491.2 6 652.8 9 669.8

图3

SA/MAH-GO微孔气凝胶纤维的表面和横截面SEM照片"

图4

GO、SA/MAH-GO质量分数对气凝胶纤维断裂强度的影响"

表2

断裂强度CV值"

MAH-GO或SA/GO
质量分数
断裂强度 CV值
MAH-GO SA/GO
0.00 8.62 8.65
0.25 5.77 7.19
0.50 4.89 5.13
0.75 7.18 7.30
1.00 11.00 11.15

图5

MAH-GO质量分数对吸附量的影响"

图6

吸附时间对吸附量的影响"

图7

染液质量浓度对吸附量的影响"

图8

温度对纤维吸附量的影响"

图9

吸附动力学拟合结果"

图10

等温吸附模型拟合结果"

表3

等温模型拟合"

Langmuir模型 Freundlich模型
Qe KL R2 n KF R2
2 588.7 0.007 57 0.995 1.564 38.86 0.769
[1] 郑海成. 海藻酸盐/氧化石墨烯复合体系的构建和应用研究[D]. 扬州: 扬州大学, 2016:2-4.
ZHENG Haicheng. Construction and application research of alginate/graphene oxide composite system[D]. Yangzhou: Yangzhou University, 2016:2-4.
[2] 徐文, 潘若才, 夏延致, 等. 海藻酸钠的结构组成及纺丝效果分析[J]. 材料导报, 2013, 27(3):91-93.
XU Wen, PAN Ruocai, XIA Yanzhi, et al. Structural composition and spinning effect analysis of sodium alginate[J]. Materials Reports B, 2013, 27(3):91-93.
[3] CESPEDES F F. Alginate-based hydrogels modif ied with olive pomace and lignin to removal organic pollutants from aqueous solutions[J]. International Journal of Biological Macromolecules, 2020(11):883-891.
[4] 马肖. 海藻酸钠纺丝原液粘度研究[J]. 学术, 2016(9): 92-93.
MA Xiao. Study on the viscosity of sodium alginate spinning dope[J]. Academic, 2016(9):92-93.
[5] 武庭瑄. 氧化石墨烯/海藻酸钠凝胶球对亚甲基蓝吸附性能的研究[J]. 广东化工, 2018, 45(19):29-30.
WU Tingxuan. Study on adsorption properties of graphene oxide/sodium alginate gel balls on methylene blue[J]. Guangdong Chemical Industry, 2018, 45(19):29-30.
[6] 苏赛赛, 赵亮. 氧化石墨烯-壳聚糖复合材料对Cu2+吸附性能的研究[J]. 山西化工, 2018(5):9-10.
SU Saisai, ZHAO Liang. Study on the adsorption performance of graphene oxide-chitosan composite material for Cu2+[J]. Shanxi Chemical Industry, 2018(5): 9-10.
[7] LIU C Y, LIU H Y, XIONG T H. Graphene oxide reinforced alginate/PVA double network hydrogels for efficient dye removal[J]. Polymers, 2018.DOI: 10.3390/polym10080835.
doi: 10.3390/polym10080835
[8] 朱薇, 江坤, 游峰, 等. 三维立体介孔结构的海藻酸钠/氧化石墨烯复合气凝胶的制备及其对亚甲基蓝的吸附[J]. 复合材料学报, 2021. DOI:10.13801/j.cnki.fhclxb.20210730.001.
doi: 10.13801/j.cnki.fhclxb.20210730.001
ZHU Wei, JIANG Kun, YOU Feng, et al. Preparation of sodium alginate/graphene oxide composite aerogel with three-dimensional mesoporous structure and its adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021.DOI:10.13801/j.cnki.fhclxb.20210730.001.
doi: 10.13801/j.cnki.fhclxb.20210730.001
[9] 陈荣平, 虞磊, 张子率, 等. 氧化石墨烯对亚甲基蓝染料的吸附研究[J]. 广东化工, 2017(24):15-16.
CHEN Rongping, YU Lei, ZHANG Zishuai, et al. Study on the adsorption of methylene blue dye on graphene oxide[J]. Guangdong Chemical Industry, 2017(24):15-16.
[10] 马莹, 王恬, 张恒, 等. 氧化石墨烯吸附亚甲基蓝的分子动力学模拟[J]. 高等化学学报, 2019(12):2534-2535.
MA Ying, WANG Tian, ZHANG Heng, et al. Molecular dynamics simulation of graphene oxide adsorption of methylene blue[J]. Acta Advanced Chemistry, 2019(12):2534-2535.
[11] 张震斌, 单凤君, 张婷婷, 等. 响应面法优化氧化石墨烯/海藻酸钠凝胶球的吸附特性[J]. 毛纺科技, 2020, 48(11):54.
ZHANG Zhenbin, SHAN Fengjun, ZHANG Tingting, et al. Optimization of the adsorption characteristics of graphene oxide/sodium alginate gel balls by response surface methodology[J]. Wool Textile Journal, 2020, 48(11): 54.
[12] 尤月, 吴彦晨, 王兴花, 等. 氧化石墨烯改性海藻酸钠凝胶球的吸附性能[J]. 东北林业大学学报, 2017 (10): 85-86.
YOU Yue, WU Yanchen, WANG Xinghua, et al. Adsorption performance of graphene oxide modified sodium alginate gel balls[J]. Journal of Northeast Forestry University, 2017(10):85-86.
[1] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[2] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[3] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[4] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[5] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[6] 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14.
[7] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[8] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[9] 刘汉邦, 李新荣, 冯文倩, 吴柳波, 袁汝旺. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(02): 208-213.
[10] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[11] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[12] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[13] 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
[14] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[15] 田利强, 梁敏, 龙康, 陈秀清. 膨胀石墨负载纳米铁的制备及其对水中Cr(Ⅵ)及染料的去除[J]. 纺织学报, 2021, 42(06): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!