纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 32-37.doi: 10.13475/j.fzxb.20220303106

• 纤维材料 • 上一篇    下一篇

高压静电加载形式对聚合物熔体静电直写制备效果的影响

李好义1,2, 贾紫初2, 刘宇亮2, 谭晶2, 丁玉梅2, 杨卫民1,2, 牟文英1,3()   

  1. 1.北京化工大学 有机无机复合材料国家重点实验室, 北京 100029
    2.北京化工大学 机电工程学院, 北京 100029
    3.首都医科大学附属北京安贞医院, 北京 100029
  • 收稿日期:2022-03-09 修回日期:2023-01-19 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 牟文英(1970—),女,助理研究员,博士。主要研究方向为医用材料力学及器械研发。E-mail:happy_mwy@163.com
  • 作者简介:李好义(1987—),男,副教授,博士。主要研究方向为微纳米纤维先进制备及应用。
  • 基金资助:
    北京化工大学有机无机复合材料国家重点实验室开放课题(oic-202201005)

Influence of electrode loading mode on preparation in polymer melt electrowriting

LI Haoyi1,2, JIA Zichu2, LIU Yuliang2, TAN Jing2, DING Yumei2, YANG Weimin1,2, MU Wenying1,3()   

  1. 1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
    2. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    3. Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
  • Received:2022-03-09 Revised:2023-01-19 Published:2023-04-15 Online:2023-05-12

摘要:

为探究熔体静电直写制备过程中电极正接与反接造成的差异,利用ANSYS对不同高压静电加载形式下纺丝区间的电场强度大小、分布以及电场方向进行了模拟分析,并从产生射流临界电压、射流速度、纤维直径、纤维沉积精度等方面进行了实验对比。模拟结果与实验结果相互印证:电极正接的情况下喷头处电场强度较反接高出14%左右,纤维直径更细,射流速度更快,相同距离下产生射流所需要的临界电压仅为反接的35%~74%;电极反接的情况下接收板位置电场强度较正接高35%左右,电场强度分布更加均匀,电场方向更加一致,更有利于提高纤维在电场中的稳定性,纤维沉积偏差较正接降低35%~51%。

关键词: 熔体静电直写, 电场模拟, 静电纺丝, 聚合物纤维支架, 聚己内酯, 电场方向

Abstract:

Objective In recent years, melt electrowriting has attracted wide attention in biomedicine, especially in tissue engineering. The loading mode of electrodes in melt electrowriting may effluent the electrostatic distribution thus further effluent the jet deposition controlling. Relatively few studies have been conducted at home or abroad, and the difference in the effect of positive and negative high voltages loading is not completely clear. In this paper, the electric fields under two kinds of high voltage electrostatic loading are simulated, and the specific experiments are analyzed and compared to determine the influence of the two conditions on the performance parameters of melt electrowriting preparation.
Method In order to explore the difference between the positive electrode connection and the reverse electrode connection in the preparation process of melt electrowriting, ANSYS was employed to simulate the magnitude, distribution and direction of the electric field in the spinning area under different high-voltage electrostatic loading. Experimental investigation was conducted to analyze the critical voltage of jet generation, jet velocity, fibers diameter, and fibers deposition accuracy.
Results The simulation and the experimental results confirm each other. In the case of positive electrode connection, the electric field strength at the nozzle is about 14% higher than that of the reverse connection (Fig. 3), the fibers are thinner (Fig. 7), and the jet velocity is faster (Fig. 8). The critical voltage required to generate a jet at the same distance is only 35% to 74% of the reverse connection (Fig. 5). In the case of reverse electrode connection, the electric field strength of the receiving plate is about 35% higher than that of the positive connection (Fig. 3), the distribution of electric field strength is more uniform, and the direction of electric field is more consistent, which is more conducive to improving the stability of the fibers in the electric field,and the fibers deposition deviation is reduced by 35%-51% compared with that in condition positive connection (Tab. 2).
Conclusion Method that high voltage was loaded on the spinning head, enabled higher electric field intensity at the spinning area, which is more conducive to jet generation and tensile refinement, and the use of this method could improve the adaptability of melt electrowriting to materials with high viscosity. Method that high voltage was loaded on the receiving plate, enabled higher electric field intensity near the receiving area, more uniform electric field distribution and smaller component of electric field vector along the horizontal direction near the receiving plate, which could reduce the instability of jet flow and improve the deposition accuracy. These results suggested that we could connect the spinning head and the receiving plate with the opposite high voltages at the same time, taking the advantages of the two electric fields loading modes.

Key words: melt electrowriting, electric field simulation, electrospinning, polymer fiber scaffold, polycaprolactone, orientation of electric field

中图分类号: 

  • TS106.5

图1

喷头仿真模型的建立"

表1

材料主要参数"

材料 相对介电常数 电导率/(S·m-1)
空气 1.000 6
不锈钢 1.1×105
5.8×106
氧化铝陶瓷 9.8

图2

电场强度分布图"

图3

电场强度与距喷头距离的关系"

图4

电场强度矢量图"

图5

纺丝距离与产生射流临界电压的关系"

图6

不同打印速度下射流状态"

图7

纺丝电压与纤维直径的关系"

图8

纺丝电压和射流速度的关系"

图9

纤维沉积偏移效果"

表2

设定纤维间距与纤维偏移距离的关系"

设定纤维
间距
纤维偏移距离
电极正接 电极反接
300 32.81 16.81
400 25.78 16.73
500 19.81 9.61
[1] 姚子琪, 张有忱, 李好义, 等. 聚合物熔体电纺PCL骨-软骨复合支架的制备及性能表征[J]. 化工新型材料, 2020, 48(8): 271-275.
YAO Ziqi, ZHANG Youchen, LI Haoyi, et al. Preparation and characterization of polymer melt electrospinning PCL bone-cartilage composite scaffold[J]. New Chemical Materials, 2020, 48(8): 271-275.
[2] KONG B, CHEN Y, LIU R, et al. Fiber reinforced gelMA hydrogel to induce the regeneration of corneal stroma[J]. Nature Communications, 2020, 11(1): 1-12.
doi: 10.1038/s41467-019-13993-7
[3] OLVERA D, SOHRABI MOLINA M, HENDY G, et al. Electroconductive melt electrowritten patches matching the mechanical anisotropy of human myocardium[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201909880.
doi: 10.1002/adfm.201909880
[4] FARRUGIA B L, BROWN T D, UPTON Z, et al. Dermal fibroblast infiltration of poly(ε-Caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode[J]. Biofabrication, 2013, 5(2): 1-11.
[5] ZENG J, WANG H, LIN Y, et al. Fabrication of microfluidic channels based on melt-electrospinning direct writing[J]. Microfluidics and Nanofluidics, 2018, 22(2): 1-10.
doi: 10.1007/s10404-017-2014-4
[6] LUO Y, WU D, ZHAO Y, et al. Direct write of a flexible high-sensitivity pressure sensor with fast response for electronic skins[J]. Organic Electronics, 2019, 67: 10-18.
doi: 10.1016/j.orgel.2019.01.001
[7] CHEN Q, MEI X, SHEN Z, et al. Direct write micro/nano optical fibers by near-field melt electro-spinning[J]. Optics Letters, 2017, 42(24): 5106-5109.
doi: 10.1364/OL.42.005106
[8] 程礼盛, 李轶, 雷文龙, 等. 熔体直写电纺聚己内酯纤维有序沉积工艺[J]. 化工进展, 2018, 37(11): 4358-4363.
doi: 10.16085/j.issn.1000-6613.2018-0255
CHENG Lisheng, LI Yi, LEI Wenlong, et al. Order deposition of poly(ε-caprolactone) fibers by directing writing melt electrospinning[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4358-4363.
doi: 10.16085/j.issn.1000-6613.2018-0255
[9] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics, 1995, 35(2): 151-160.
doi: 10.1016/0304-3886(95)00041-8
[10] 郑高峰, 王凌云, 孙道恒. 基于近场静电纺丝的微/纳米结构直写技术[J]. 纳米技术与精密工程, 2008, 6(1): 20-23.
ZHENG Gaofeng, WANG Lingyun, SUN Daoheng. Micro nano-structure direct-write technology based on near-field electrospinning[J]. Nanotechnology and Precision Engineering, 2008, 6(1): 20-23.
[11] BROWN T D, DALTON P D, HUTMACHER D W. Direct writing by way of melt electrospinning[J]. Advanced Materials, 2011, 23(47): 5651-5657.
doi: 10.1002/adma.201103482
[12] DENG R, LIU Y, DING Y, et al. Melt electrospinning of low-density polyethylene having a low-melt flow index[J]. Journal of Applied Polymer Science, 2009, 114(1): 166-175.
doi: 10.1002/app.v114:1
[13] 王肖娜. 熔体静电纺纤维膜成形及调控研究[D]. 无锡: 江南大学, 2013:17-23.
WANG Xiaona. Research on formation and adjustment of fibrous membrane in melt electrospinning[D]. Wuxi: Jiangnan University, 2013:17-23.
[14] 李轶. 基于熔体直写电纺技术的三维结构可控制备[D]. 北京: 北京化工大学, 2018:15-17.
LI Yi. Controllable preparation of three-dimensional structure based on melt direct writing electrospinning technology[D]. Beijing: Beijing University of Chemical Technology, 2018:15-17.
[15] 雷文龙, 张莉彦, 李轶, 等. 熔体电纺直写技术的成型工艺精度[J]. 工程塑料应用, 2018, 46(12): 58-62.
LEI Wenlong, ZHANG Liyan, LI Yi, et al. Precision of molding process of melt electrospinning direct writing technology[J]. Engineering Plastics Application, 2018, 46(12):58-62.
[1] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[2] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[3] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[4] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[5] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[6] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[7] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[8] 吕丽华, 李臻. 废弃玉米秸秆的结构特征及其吸声性能[J]. 纺织学报, 2022, 43(12): 42-47.
[9] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[10] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[11] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[12] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[13] 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
[14] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[15] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!