纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 70-77.doi: 10.13475/j.fzxb.20211111008

• 纺织工程 • 上一篇    下一篇

基于视觉校准的环锭纺细纱条干特征在线提取方法

陶静1, 汪俊亮2(), 徐楚桥3, 张洁2   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.东华大学 人工智能研究院, 上海 201620
    3.上海交通大学 机械与动力工程学院, 上海 200240
  • 收稿日期:2021-11-26 修回日期:2022-12-28 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 汪俊亮(1991—),男,副研究员,博士。主要研究方向为智能制造系统建模、运行分析与优化理论,工业大数据分析方法,计算机视觉与模式识别。E-mail:junliangwang@dhu.edu.cn
  • 作者简介:陶静(1999—),女,硕士生。主要研究方向为机器视觉。
  • 基金资助:
    山东省重点研发计划项目(2021CXGC011004);上海市教委晨光计划项目(20CG41);国家工信部项目(2021-0173-2-1);东华大学中央高校学科交叉重点项目(2232021A-08)

Feature extraction method for ring-spun-yarn evenness online detection based on visual calibration

TAO Jing1, WANG Junliang2(), XU Chuqiao3, ZHANG Jie2   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
    3. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-11-26 Revised:2022-12-28 Published:2023-04-15 Online:2023-05-12

摘要:

针对纱线高速回转、毛羽条干交织导致的条干轮廓特征难以准确提取的问题,提出了深度学习与形态学运算融合的在线提取方法,设计了图像在线采集系统与校准定焦方法,为轮廓特征提取提供高质量输入,构建了基于整体嵌套边缘检测神经网络和形态学运算的细纱条干轮廓特征提取重构模型,实现毛羽干扰下的条干轮廓在线准确提取。实验结果表明,所提方法的轮廓提取准度指标OIS-F(optimal image scale)、ODS-F(optimal dataset scale)达到了0.91,平均准确率AP达到了0.89,相对于当前方法提高了7%以上。基于提取的轮廓特征计算的条干不匀CV值,与CT3000均匀度检测仪的平均误差小于4%。

关键词: 细纱条干均匀度, 在线检测, 机器视觉, 轮廓提取, 条干CV值

Abstract:

Objective The appearance quality of yarn is directly related to its mechanical properties and even economic value. However, manual inspection is still the dominant method in most factories, which are lagging and subjective. Based on machine vision and other emerging technology, in the ring spinning yarn production process of online detection of fine yarn evenness, hairiness and other indicators, so as to drive the classification of yarn drop and other emerging industry, has important theoretical significance and engineering value.
Method Accurate contour extraction during online visual inspection of ring spun yarn is difficult because of high speed yarn rotation and interweaving of the hairiness. To solve this problem, a method that fused deep-learning with morphological operations is proposed. Firstly, an online image acquisition system and focusing method are designed to provide high quality input for contour feature extraction; Secondly, a model based on holistically-nested edge detection(HED) neural network and morphological operations is constructed to achieve accurate online contour extraction under the interference of hairiness.
Results The camera was deployed to acquire 1 600 images of the yarn, whose resolution is 2 448 pixel×2 048 pixel, to calculate the optimal focal plane with the acquisition parameters. Compared with the images acquired under other focal plane parameters, the images acquired under the calculated focal plane parameters are of higher quality, which obviously improves the accuracy of contour extraction. 500 images of yarn were collected using the calibrated image acquisition system and processed with the proposed contour extraction method and other SOTA(state of the art) methods. The proposed method achieves OIS-F (optimal image scale), ODS-F (Optimal Dataset scale) of 0.91 and AP (average precision) of 0.89, which is more than 7% better than the current method. From the visual comparison results, it can be seen that the proposed method is based on the output of HED network, combined with morphological operations to remove the interference of hairiness and fiber texture, and reconstruct the yarn stem contour based on Cubic spline interpolation with good consistency. Finally, the extracted yarn contours were further processed using the proposed reconstruction method to calculate the CV value of yarn unevenness. In this paper, five groups of image data collected from different groups are processed using the proposed algorithm (experiments are performed using a Tesla V100 with 32 GB video memory GPU) to calculate the CV values for each group of 4 000 images. The average processing speed is about 24 frame/s, higher than the current experimental maximum image acquisition frequency of 20 frame/s. As shown in Fig. 6, the calculated results were compared with those of the laboratory high-precision electronic yarn evenness tester (CT3000), with an average error of less than 4% and a minimum accuracy of 92% and a maximum of 99% for a single group of tube yarn measurements.
Conclusion The image acquisition system calibration method improves the quality of the acquired data and facilitates the processing of subsequent algorithms. The designed deep learning and morphological operations fusion method for the extraction and reconstruction of yarn evenness effectively removes the interference of hairiness and improves the accuracy of the calculated CV values. In terms of processing speed, the proposed method can meet the current demand of online detection. And from the comparison results of the CV value of yarn unevenness, the detection accuracy also reaches the standard of practical application. The good application of the proposed method in the online detection of ring-spun-yarn evenness has been verified and the hardware system design as well as algorithm optimization can be further investigated for different application scenarios.

Key words: yarn evenness, online detection, machine vision, contour extraction, evenness CV values

中图分类号: 

  • TP391.4

图1

细纱图像在线采集系统及坐标系变换"

图2

纱线图像清晰程度分布"

图3

HED网络结构"

图4

纱线混合特征图骨架提取"

表1

数据采集参数信息"

组号 锭速/
(r·min-1)
总牵伸
倍数
捻度/
(捻·m-1)
数量/
1 8 000 38 700 3 000
2 10 000 38 800 2 700
3 10 000 38 900 3 100
4 10 000 39 900 3 100
5 10 000 40 900 3 100

表2

不同焦平面采集数据轮廓提取准度"

位置参数/mm ODS值 OIS值 AP值
0 0.590 071 0.595 236 0.414 508
-0.16 0.666 123 0.673 874 0.559 819
-0.32 0.846 951 0.849 573 0.776 636
-0.48 0.636 186 0.650 662 0.547 954
-0.64 0.599 691 0.603 217 0.421 802

表3

不同方法轮廓提取准度对比"

方法 ODS值 OIS值 AP值
Canny 0.487 969 0.488 000 0.401 523
Sobel 0.597 718 0.600 280 0.530 177
Prewitt 0.600 903 0.606 036 0.537 933
ContourGAN 0.309 783 0.323 994 0.287 769
CASENet 0.772 892 0.782 390 0.623 984
DexiNet 0.782 251 0.786 169 0.644 599
Pidinet 0.760 514 0.780 851 0.580 290
RCF 0.829 445 0.832 497 0.546 475
HED 0.846 951 0.849 573 0.776 636
Ours 0.907 399 0.908 345 0.861 508

图5

轮廓提取结果对比"

图6

条干CV值结果对比"

[1] 张洁, 吕佑龙, 汪俊亮, 等. 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38(10):159-165.
ZHANG Jie, LÜ Youlong, WANG Junliang, et al. Big-data-driven frame work for intelligent textile manufacturing[J]. Journal of Textile Research, 2017, 38(10):159-165.
[2] 赵树煊, 张洁, 汪俊亮, 等. 基于两阶段深度迁移学习的面料疵点检测算法[J]. 机械工程学报, 2021, 57(17):86-97.
doi: 10.3901/JME.2021.17.086
ZHAO Shuxuan, ZHANG Jie, WANG Junlinag, et al. Fabric defect detection algorithm based on two-stage deep transfer learning[J]. Journal of Mechanical Engineering, 2021, 57(17):86-97.
doi: 10.3901/JME.2021.17.086
[3] XU C, WANG J, TAO J, et al. A knowledge augmented deep learning method for vision-based yarn contour detection[J]. Journal of Manufacturing Systems, 2022, 63: 317-328.
doi: 10.1016/j.jmsy.2022.04.006
[4] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(4):191-200.
WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction[J]. Journal of Textile Research, 2021, 42(4):191-200.
[5] 李忠海, 金海洋, 邢晓红. 整数阶滤波的分数阶Sobel算子的边缘检测算法[J]. 计算机工程与应用, 2018, 54(4):179-184.
doi: 10.3778/j.issn.1002-8331.1609-0077
LI Zhonghai, JING Haiyang, XING Xiaohong. Edge detection algorithm of fractional order sobel operator for integer order differential filtering[J]. Computer Engineering and Applications, 2018, 54(4):179-184.
doi: 10.3778/j.issn.1002-8331.1609-0077
[6] 金守峰, 陈阳, 林强强, 等. 起绒织物表面轮廓提取及覆盖程度估计方法[J]. 棉纺织技术, 2019, 47(9):13-17.
JIN Shoufeng, CHEN Yang, LIN Qiangqiang, et al. Method of estimating surface contour extraction and coverage degree of fluff fabric[J]. Cotton Textile Technology, 2019, 47(9):13-17.
[7] 王蔚, 王晓凯, 龚真, 等. 基于形态学的机器视觉玻璃切割边缘提取[J]. 测试技术学报, 2020, 34(1):22-27.
WANG Wei, WANG Xiaokai, GONG Zhen, et al. Edge detection of cutting-glass using machine vision based on morphology[J]. Journal of Test and Measurement Technology, 2020, 34(1):22-27.
[8] XU C, WANG J, TAO J, et al. A knowledge augmented image deblurring method with deep learning for in-situ quality detection of yarn production[J]. International Journal of Production Research, 2022. DOI:10.1080/00207543.2021.2010827.
doi: 10.1080/00207543.2021.2010827
[9] OSTU N. A threshold selection method from gray-level histogram[J]. IEEE Transactions on Systems, 1979, 9(1): 62-66.
[10] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas: ACM, 2000: 93-104.
[11] XIE S, TU Z. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1): 3-18.
doi: 10.1007/s11263-017-1004-z
[12] ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239.
doi: 10.1145/357994.358023
[13] YU Z, FENG C, LIU M Y, et al. Casenet: deep category-aware semantic edge detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 5964-5973.
[14] LIU Y, CHENG M M, HU X, et al. Richer convolutional features for edge detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3000-3009.
[15] YANG H, LI Y, YAN X, et al. ContourGAN: Image contour detection with generative adversarial network[J]. Knowledge-Based Systems, 2019, 164: 21-28.
doi: 10.1016/j.knosys.2018.09.033
[16] POMA X S, RIBA E, et al. Dense extreme inception network: Towards a robust cnn model for edge detec-tion[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE, 2020: 1923-1932.
[17] SU Z, LIU W, YU Z, et al. Pixel difference networks for efficient edge detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 5117-5127.
[1] 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175.
[2] 徐健, 胡道杰, 刘秀平, 韩琳, 闫焕营. 基于改进型RFB-MobileNetV3的棉杂图像检测[J]. 纺织学报, 2023, 44(01): 179-187.
[3] 陆浩杰, 李曼丽, 金恩琪, 张宏伟, 周赳. 基于弧形电容器的浆纱回潮率在线测量[J]. 纺织学报, 2023, 44(01): 201-208.
[4] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[5] 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(08): 1-6.
[6] 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139.
[7] 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169.
[8] 任维佳, 杜玉红, 左恒力, 袁汝旺. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204.
[9] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[10] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200.
[11] 田宇航, 王绍宗, 张文昌, 张倩. 基于机器视觉的单组分染液浓度快速检测方法[J]. 纺织学报, 2021, 42(03): 115-121.
[12] 冯文倩, 李新荣, 杨帅. 人体轮廓机器视觉检测算法的研究进展[J]. 纺织学报, 2021, 42(03): 190-196.
[13] 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺织学报, 2020, 41(12): 137-143.
[14] 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163.
[15] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!