纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 70-77.doi: 10.13475/j.fzxb.20211111008
TAO Jing1, WANG Junliang2(), XU Chuqiao3, ZHANG Jie2
摘要:
针对纱线高速回转、毛羽条干交织导致的条干轮廓特征难以准确提取的问题,提出了深度学习与形态学运算融合的在线提取方法,设计了图像在线采集系统与校准定焦方法,为轮廓特征提取提供高质量输入,构建了基于整体嵌套边缘检测神经网络和形态学运算的细纱条干轮廓特征提取重构模型,实现毛羽干扰下的条干轮廓在线准确提取。实验结果表明,所提方法的轮廓提取准度指标OIS-F(optimal image scale)、ODS-F(optimal dataset scale)达到了0.91,平均准确率AP达到了0.89,相对于当前方法提高了7%以上。基于提取的轮廓特征计算的条干不匀CV值,与CT3000均匀度检测仪的平均误差小于4%。
中图分类号:
[1] | 张洁, 吕佑龙, 汪俊亮, 等. 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38(10):159-165. |
ZHANG Jie, LÜ Youlong, WANG Junliang, et al. Big-data-driven frame work for intelligent textile manufacturing[J]. Journal of Textile Research, 2017, 38(10):159-165. | |
[2] |
赵树煊, 张洁, 汪俊亮, 等. 基于两阶段深度迁移学习的面料疵点检测算法[J]. 机械工程学报, 2021, 57(17):86-97.
doi: 10.3901/JME.2021.17.086 |
ZHAO Shuxuan, ZHANG Jie, WANG Junlinag, et al. Fabric defect detection algorithm based on two-stage deep transfer learning[J]. Journal of Mechanical Engineering, 2021, 57(17):86-97.
doi: 10.3901/JME.2021.17.086 |
|
[3] |
XU C, WANG J, TAO J, et al. A knowledge augmented deep learning method for vision-based yarn contour detection[J]. Journal of Manufacturing Systems, 2022, 63: 317-328.
doi: 10.1016/j.jmsy.2022.04.006 |
[4] | 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(4):191-200. |
WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction[J]. Journal of Textile Research, 2021, 42(4):191-200. | |
[5] |
李忠海, 金海洋, 邢晓红. 整数阶滤波的分数阶Sobel算子的边缘检测算法[J]. 计算机工程与应用, 2018, 54(4):179-184.
doi: 10.3778/j.issn.1002-8331.1609-0077 |
LI Zhonghai, JING Haiyang, XING Xiaohong. Edge detection algorithm of fractional order sobel operator for integer order differential filtering[J]. Computer Engineering and Applications, 2018, 54(4):179-184.
doi: 10.3778/j.issn.1002-8331.1609-0077 |
|
[6] | 金守峰, 陈阳, 林强强, 等. 起绒织物表面轮廓提取及覆盖程度估计方法[J]. 棉纺织技术, 2019, 47(9):13-17. |
JIN Shoufeng, CHEN Yang, LIN Qiangqiang, et al. Method of estimating surface contour extraction and coverage degree of fluff fabric[J]. Cotton Textile Technology, 2019, 47(9):13-17. | |
[7] | 王蔚, 王晓凯, 龚真, 等. 基于形态学的机器视觉玻璃切割边缘提取[J]. 测试技术学报, 2020, 34(1):22-27. |
WANG Wei, WANG Xiaokai, GONG Zhen, et al. Edge detection of cutting-glass using machine vision based on morphology[J]. Journal of Test and Measurement Technology, 2020, 34(1):22-27. | |
[8] |
XU C, WANG J, TAO J, et al. A knowledge augmented image deblurring method with deep learning for in-situ quality detection of yarn production[J]. International Journal of Production Research, 2022. DOI:10.1080/00207543.2021.2010827.
doi: 10.1080/00207543.2021.2010827 |
[9] | OSTU N. A threshold selection method from gray-level histogram[J]. IEEE Transactions on Systems, 1979, 9(1): 62-66. |
[10] | BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas: ACM, 2000: 93-104. |
[11] |
XIE S, TU Z. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1): 3-18.
doi: 10.1007/s11263-017-1004-z |
[12] |
ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239.
doi: 10.1145/357994.358023 |
[13] | YU Z, FENG C, LIU M Y, et al. Casenet: deep category-aware semantic edge detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 5964-5973. |
[14] | LIU Y, CHENG M M, HU X, et al. Richer convolutional features for edge detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3000-3009. |
[15] |
YANG H, LI Y, YAN X, et al. ContourGAN: Image contour detection with generative adversarial network[J]. Knowledge-Based Systems, 2019, 164: 21-28.
doi: 10.1016/j.knosys.2018.09.033 |
[16] | POMA X S, RIBA E, et al. Dense extreme inception network: Towards a robust cnn model for edge detec-tion[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE, 2020: 1923-1932. |
[17] | SU Z, LIU W, YU Z, et al. Pixel difference networks for efficient edge detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 5117-5127. |
[1] | 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175. |
[2] | 徐健, 胡道杰, 刘秀平, 韩琳, 闫焕营. 基于改进型RFB-MobileNetV3的棉杂图像检测[J]. 纺织学报, 2023, 44(01): 179-187. |
[3] | 陆浩杰, 李曼丽, 金恩琪, 张宏伟, 周赳. 基于弧形电容器的浆纱回潮率在线测量[J]. 纺织学报, 2023, 44(01): 201-208. |
[4] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
[5] | 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(08): 1-6. |
[6] | 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139. |
[7] | 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169. |
[8] | 任维佳, 杜玉红, 左恒力, 袁汝旺. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204. |
[9] | 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206. |
[10] | 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200. |
[11] | 田宇航, 王绍宗, 张文昌, 张倩. 基于机器视觉的单组分染液浓度快速检测方法[J]. 纺织学报, 2021, 42(03): 115-121. |
[12] | 冯文倩, 李新荣, 杨帅. 人体轮廓机器视觉检测算法的研究进展[J]. 纺织学报, 2021, 42(03): 190-196. |
[13] | 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺织学报, 2020, 41(12): 137-143. |
[14] | 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163. |
[15] | 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146. |
|