纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 147-154.doi: 10.13475/j.fzxb.20211201201

• 纺织工程 • 上一篇    下一篇

湖羊毛非织造阻燃吸声材料的制备及其性能

谭启飞1, 陈梦莹1, 马晟晟1,2, 孙明祥1,2, 代春鹏3, 罗仑亭4, 陈益人1,2()   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
    3.湖北致清和农牧有限公司, 湖北 宜昌 443100
    4.宜昌市夷陵区农产品质量安全服务中心, 湖北 宜昌 443101
  • 收稿日期:2021-12-07 修回日期:2022-04-30 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 陈益人(1964—),女,教授,博士。主要研究方向为纺织材料与纺织品设计。E-mail:yiren.chen@wtu.edu.cn。
  • 作者简介:谭启飞(1997—),男,硕士生。主要研究方向为纺织纤维性能及纺织产品设计。
  • 基金资助:
    武汉纺织大学研究生创新基金项目(20191815073010);湖北省大学生创新创业训练计划项目(201810495042)

Preparation and properties of nonwoven flame retardant sound-absorbing material from Hu sheep wool

TAN Qifei1, CHEN Mengying1, MA Shengsheng1,2, SUN Mingxiang1,2, DAI Chunpeng3, LUO Lunting4, CHEN Yiren1,2()   

  1. 1. School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing Technology Jointly Built by Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, Hubei 443100, China
    4. Yichang Yiling District Agricultural Products Quality and Safety Service Center, Yichang, Hubei 443101, China
  • Received:2021-12-07 Revised:2022-04-30 Published:2023-05-15 Online:2023-06-09

摘要:

针对国内湖羊养殖规模不断壮大,但湖羊毛未能高效利用的问题,结合湖羊毛本身的性能及结构特点,采用针刺加工的方式开发一种汽车内饰吸声材料,以提高湖羊毛附加价值,保护天然资源不被浪费。通过针刺成形、缩绒整理、阻燃整理等加工过程制得吸声性能优良并具备阻燃功能的吸声材料。探究了材料的结构参数、缩绒工艺对湖羊毛非织造材料吸声性能的影响。结果表明:当湖羊毛非织造材料厚度大于3.5 mm,面密度大于350 g/m2时,在高频段(500~6 000 Hz)范围,其吸声系数大于50%,属于高效吸声材料。经阻燃整理后,湖羊毛针刺吸声材料的水平方向燃烧性能超过对汽车内饰材料阻燃标准要求(燃烧速度不大于100 mm/min),垂直方向燃烧性能达到阻燃标准要求。

关键词: 湖羊毛, 针刺加工, 缩绒整理, 阻燃整理, 结构参数, 吸声性能, 非织造吸声材料

Abstract:

Objective The scale of Hu sheep breeding continues to grow, but due to the low quality of fiber, Hu sheep wool is not suitable for preparing medium and high-grade wool yarns, resulting in the low price and low industrial demand. Based on the performance and structural characteristics of Hu sheep wool, this paper explores the development of sound-absorbing material by needle punching Hu sheep wool, which represents an effort to best use natural resources.

Method Hu sheep wool sound-absorbing materials were prepared by needling, milled finishing and flame retardant finishing. The processing process involves scouring → weighing → opening → carding → lapping→ fleece formation → pre-needling → needling → rolling → milled-finishing → drying → flame retardant finishing → drying → finished product. The effects of structural parameters, milled process and flame retardant process on sound absorption performance were explored.

Results Hu sheep wool has a distinct medullary cavity, which is a loose porous structure (Fig.2). The Hu sheep wool scales are covered with craze, and the scales are wide and cocked up obviously (Fig.3). The fibers of Hu sheep wool were entangled with each other to form a three-dimensional fiber network (Figs.4-6). The fibers winding of Hu sheep wool needled fabric after milled finishing was more compact than that before milled finishing. After flame retardant finishing, the flame retardant was attached to the fiber surface of the Hu sheep wool needle fabric. When the sound wave range was in the middle and high frequency range, the sound absorption effect of the Hu sheep wool sound absorption material was good (Fig.7). The structural parameters (thickness, surface density and average pore size) of needled sound absorbing materials had influence on sound absorption performance (Tab.3). The horizontal burning performance of the Hu sheep wool needled fabric before flame retardant finishing reached the flame retardant standard requirements, but the vertical burning speed was 276 mm/min, failing meeting the standard requirements(Fig.8). After flame retardant finishing, the horizontal burning performance exceeded the standard requirements, and the vertical burning speed became 0 mm/min, meeting the standard requirements.

Conclusion Hu sheep wool has an obvious medullary layer, and the porous structure of its medullary cavity makes Hu sheep wool have good sound absorption performance. The Hu sheep wool scales are covered with craze, and the scales were very wide and cocked up obviously. This scale structure makes the Hu sheep wool have good milling power. For Hu sheep wool needled fabric, thickness and surface density are the main factors affecting its sound absorption performance. On the premise of not affecting the lightweight of the vehicle and meeting the requirements of sound absorption performance, the Hu sheep wool needled fabric with a thickness of 3.5-5 mm and a surface density of 350-450 g/m2 can be selected as the sound absorption material for the interior of the vehicle to meet the requirements of noise reduction.

Key words: Hu sheep wool, needling, milled finishing, flame retardant finishing, structural parameter, sound absorption performance, nonwoven sound-absorbing material

中图分类号: 

  • TS174.6

表1

洗毛方案"

洗槽 温度/℃ 时间/min 槽内试剂
一槽 50 3 清水
二槽 60 3 0.1%中性洗涤剂
0.5%元明粉
三槽 60 3 0.08%中性洗涤剂
0.4%元明粉
四槽 50 3 清水
五槽 50 3 清水

图1

湖羊毛非织造材料铺网和成品"

图2

湖羊毛横截面SEM照片(×1 500)"

图3

不同放大倍数下湖羊毛鳞片结构SEM照片"

图4

不同整理工艺时湖羊毛非织造材料的SEM照片"

表2

湖羊毛非织造材料的结构参数"

样品 厚度/mm 平均孔径/μm 面密度/(g·m-2)
样品1 0.72 284.80 83.64
样品2 3.22 220.30 293.12
样品3 4.55 179.70 399.37
样品4 4.58 176.80 407.76

图5

不同结构参数湖羊毛非织造材料的吸声系数"

表3

湖羊毛非织造材料的结构参数与吸声系数"

序号 厚度/
mm
平均孔径/
μm
面密度/
(g·m-2)
吸声系数/
%
序号 厚度/
mm
平均孔径/
μm
面密度/
(g·m-2)
吸声系数/
%
1 0.72 284.8 83.64 26.0 16 3.86 160.2 351.52 51.4
2 3.22 220.3 293.12 44.4 17 3.54 198.6 279.39 49.6
3 4.55 179.7 407.76 60.0 18 1.98 270.8 155.98 32.2
4 4.58 176.8 399.37 61.9 19 1.62 203.4 158.38 37.2
5 1.61 222.5 133.29 32.3 20 3.08 244.4 253.06 51.1
6 0.75 257.7 77.51 25.7 21 2.39 277.0 192.64 39.7
7 2.63 203.9 214.38 40.6 22 4.01 180.4 384.28 56.8
8 2.36 221.5 199.95 40.7 23 4.85 172.6 447.03 63.4
9 2.81 215.2 221.53 42.8 24 4.72 189.7 435.25 62.9
10 2.89 221.9 228.59 45.0 25 4.34 185.7 341.19 50.7
11 2.56 227.2 226.85 37.9 26 6.03 204.3 689.85 83.5
12 3.41 207.8 304.47 47.9 27 1.16 264.2 96.74 26.6
13 3.97 214.1 399.37 52.1 28 2.10 241.1 136.84 34.4
14 5.93 155.1 687.30 80.6 29 5.07 175.3 471.14 77.7
15 2.95 237.7 242.72 43.1 30 3.97 237.0 268.94 53.2

表4

湖羊毛非织造材料缩绒整理前后的结构参数"

样品 类别 厚度/mm 面密度/(g·m-2) 平均孔径/μm
样品1# 未缩绒 4.74 264.49 194.20
缩绒后 5.20 300.46 186.30
样品2# 未缩绒 6.36 429.89 178.40
缩绒后 7.71 643.46 176.00
样品3# 未缩绒 5.94 288.80 211.80
缩绒后 5.04 312.84 206.40

图6

缩绒前后湖羊毛非织造材料的吸声系数"

图7

水平法测试湖羊毛非织造材料燃烧性能图"

图8

垂直法测试湖羊毛非织造材料燃烧性能图"

[1] 李玉峰, 李江涛, 殷雨洋, 等. 湖州湖羊产业发展现状及对策[J]. 养殖与饲料, 2017(11):98-99.
LI Yufeng, LI Jiangtao, YIN Yuyang, et al. Development status and countermeasures of Huyang sheep industry in Huzhou[J]. Animals Breeding and Feed, 2017(11): 98-99.
[2] 王超丽, 刘强, 付云宝, 等. 南疆墨玉县地区提高湖羊羔羊成活率的综合措施[J]. 养殖与饲料, 2020(5):48-50.
WANG Chaoli, LIU Qiang, FU Yunbao, et al. Comprehensive measures to improve the survival rate of Hu lamb in Moyu county, southern Xinjiang[J]. Animals Breeding and Feed, 2020 (5): 48-50.
[3] 刘会敏, 陈家振. 湖羊“地位”及“后时代”应对策略[J]. 现代畜牧科技, 2021(11):35-37.
LIU Huimin, CHEN Jiazhen. Huyang ″status″ and ″postage″ coping strategies[J]. Modern Animal Husbandry Science & Technology, 2021(11):35-37.
[4] 马芳武, 王海林, 刘强. 汽车车内噪声控制技术[J]. 汽车技术, 2009(12):47-50,53.
MA Fangwu, WANG Hailin, LIU Qiang. NVH technology for controlling automotive interior noise[J]. Automotive Technology, 2009(12): 47-50,53.
[5] 李奕慈. 微型车车身结构对车内低频噪声的影响规律研究[D]. 武汉: 武汉理工大学, 2018:19-21.
LI Yici. Influence law of minivan body structure onlow frequency interior noise[D]. Wuhan: Wuhan University of Technology, 2018:19-21.
[6] 何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用[M]. 北京: 科学出版社, 2006:116-119.
HE Lin, ZHU Haichao, QIU Xiaojun, et al. Acoustic theory and engineering application[M]. Beijing: Science Press, 2006:116-119.
[7] 丁雷. 声频工程中共振吸声材料特性及应用[J]. 电声技术, 2019, 43(5):12-18.
DING Lei. Characteristics and application of resonance sound-absorbing materials in audio engineering[J]. Electroacoustic Technology, 2019, 43 (5): 12-18.
[8] 张亚虎, 任伟. 共振吸声体降噪研究与应用[J]. 制冷技术, 2015, 35(4):43-46.
ZHANG Yahu, REN Wei. Research and application of noise reduction by resonance absorber[J]. Refrigeration Technology, 2015, 35 (4): 43-46.
[9] 王冰, 张荣波, 邹汉涛. 聚丙烯/亚麻针刺无纺布及其复合材料性能的研究[J]. 武汉纺织大学学报, 2017, 30(3):8-11.
WANG Bing, ZHANG Rongbo, ZOU Hantao. Study on the properties of polypropylene/linen needle-punched non-woven fabrics and their composite materials[J]. Journal of Wuhan Textile University, 2017, 30(3):8-11.
[10] THILAGAVATHI G, PRADEEP E, KANNAIAN T, et al. Development of natural fiber nonwovens for application as car interiors for noise control[J]. Journal of Industrial Textiles, 2010, 39(3):267-278.
doi: 10.1177/1528083709347124
[11] TIUC AE, NEMES O, VERMESAN H, et al. Innovative use of sheep wool for obtaining materials with improved sound-absorbing properties[J]. Materials, 2020, 13(3): 694.
doi: 10.3390/ma13030694
[12] 李长伟, 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018, 39(10):74-80.
LI Changwei, LÜ Lihua. Preparation and properties of sound absorption composites based on waste wool[J]. Journal of Textile Research, 2018, 39 (10): 74-80.
[13] 成钢. 羊毛吸声绝热制品的性能及应用[J]. 新型建筑材料, 2009, 36(5):63-66.
CHENG Gang. Performance and application of wool sound absorption and thermal insulation product[J]. New Building Materials, 2009, 36 (5): 63-66.
[14] 栾巧丽, 邱华, 成钢, 等. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017, 38(3):67-71.
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Sound absorption properties of nonwoven material based on wool and its hybrid fibers[J]. Journal of Textile Research, 2017, 38 (3): 67-71.
[15] QIU Hua, YANG Enhui. Effect of thickness, density and cavity depth on the sound absorption properties of wool boards[J]. AUTEX Research Journal, 2018, 18(2): 203-208.
doi: 10.1515/aut-2017-0020
[16] 张辉, 谢光银, 范立红, 等. 洗涤缩绒对羊毛织物透气、光泽和吸声性能的影响[J]. 毛纺科技, 2008(7):53-55.
ZHANG Hui, XIE Guangyin, FAN Lihong, et al. Study on the properties of air permeability, luster and sound absorption of milling wool fabric by washing[J]. Wool Textile Journal, 2008 (7): 53-55.
[17] 李丽君, 罗佳妮, 唐雨蓉, 等. 废弃混杂湖羊毛/低熔点纤维针刺非织造布的制备及性能研究[J]. 产业用纺织品, 2020, 38(10):19-26.
LI Lijun, LUO Jiani, TANG Yurong, et al. Study on preparation and properties of waste mixed lake wool/ low melting point fiber needled nonwoven[J]. Technical Textiles, 2020, 38 (10): 19-26.
[18] 王双闪. 针刺非织造材料基复合吸声体吸声性能研究[D]. 苏州: 苏州大学, 2014:12-13.
WANG Shuangshan. Study the absorption properties of non-woven material matrix composite absorber[D]. Suzhou: Soochow University, 2014:12-13.
[19] 席莺, 李旭祥, 方志刚, 等. 聚氯乙烯基混合吸声材料的研究[J]. 高分子材料科学与工程, 2001, 17(2):129-132.
XI Ying, LI Xuxiang, FANG Zhigang, et al. Research on foamed pvc-compound sound absorbing material[J]. Polymer Materials Science and Engineering, 2001, 17(2): 129-132.
[20] 刘鹏辉, 杨宜谦, 姚京川. 多孔吸声材料的吸声特性研究[J]. 噪声与振动控制, 2011, 31(2):123-126.
doi: 10.3969/j.issn.1006-1355-2011.02.029
LIU Penghui, YANG Yiqian, YAO Jingchuan. Study on absorption property of porous sound-absorbing mate-rial[J]. Noise And Vibration Control, 2011, 31(2): 123-126.
doi: 10.3969/j.issn.1006-1355-2011.02.029
[21] 栾巧丽, 邱华, 成钢, 等. 废旧羊毛非织造布的制备及其吸声性能[J]. 纺织学报, 2016, 37(7):77-81.
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Preparation of waste wool nonwovens and their sound absorption properties[J]. Journal of Textile Research, 2016, 37(7):77-81.
[22] JYOTIRMOY Das, DATTA Roy M. A study of sound absorption properties of jute felt mattress[J]. Journal of The Institution of Engineers (India): Series E, 2021, 102(2):369-375.
doi: 10.1007/s40034-021-00229-x
[1] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[2] 吕丽华, 李臻. 废弃玉米秸秆的结构特征及其吸声性能[J]. 纺织学报, 2022, 43(12): 42-47.
[3] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[4] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[5] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[6] 王春茹, 袁月, 曹晓梦, 范依琳, 钟安华. 立领结构参数对服装造型的影响[J]. 纺织学报, 2022, 43(03): 153-159.
[7] 金文杰, 程献伟, 关晋平, 陈国强. 聚酰胺6织物的磺胺阻燃抗熔滴整理[J]. 纺织学报, 2022, 43(02): 171-175.
[8] 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35.
[9] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[10] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[11] 任丽冰, 陈利, 焦伟. 基于一元二次函数的层联机织预制体细观结构表征[J]. 纺织学报, 2021, 42(08): 76-83.
[12] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[13] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[14] 李永贺, 瞿凌曦, 徐壁, 蔡再生, 葛凤燕. 生物基聚对苯二甲酸丙二醇酯织物的阻燃与三防一步法泡沫整理[J]. 纺织学报, 2021, 42(04): 8-15.
[15] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!