纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 164-170.doi: 10.13475/j.fzxb.20220400501

• 染整与化学品 • 上一篇    下一篇

氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能

胡安钟1,2, 王成成1,2, 钟子恒1,2, 张丽平1,2(), 付少海1,2   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2022-04-01 修回日期:2023-02-15 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 张丽平(1985—),女,教授,博士。主要研究方向为智能变色材料与柔性可穿戴纺织品。E-mail:zhanglp@jiangnan.edu.cn。
  • 作者简介:胡安钟(1996—),女,硕士生。主要研究方向为温致变色织物变色灵敏度提升方法。
  • 基金资助:
    江苏省自然科学基金项目(BK20211240)

Preparation and properties of fast response thermochromic textiles doped with boron nitride nanosheets

HU Anzhong1,2, WANG Chengcheng1,2, ZHONG Ziheng1,2, ZHANG Liping1,2(), FU Shaohai1,2   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2022-04-01 Revised:2023-02-15 Published:2023-05-15 Online:2023-06-09

摘要:

针对温致变色材料在变色过程中由于低导热性而产生的变色响应迟缓问题,以六方氮化硼(h-BN)为原料,通过高温氧化法制备高导热性能的氮化硼纳米片(BNNS),并将其与温致变色色浆均匀混合,采用丝网印花技术制备了BNNS掺杂型快速响应温致变色织物。对BNNS的微观结构和BNNS掺杂型快速响应温致变色织物的颜色性能、变色响应速率、导热性能、循环性能和牢度进行了表征测试。分析了BNNS的质量分数对纺织品的颜色性能、变色灵敏度的作用关系。结果表明:BNNS质量分数为2%时,制备的快速响应温致变色织物具有良好的显色性能、快速变色性能(8 s),变色速率提高20%,快速复色性能(13 s),复色速率提高10.3%,良好的耐摩擦色牢度和耐水洗色牢度(4级)及出色的循环使用性(>200次)。

关键词: 温致变色, 氮化硼纳米片, 快速响应, 丝网印花, 智能纺织品, 涤纶/棉织物

Abstract:

Objective Thermochromic textiles based on fluorane dye microcapsules have many advantages, which are widely used in military camouflage, thermochromic clothing and smart windows, and so on. However, its application in the field of high sensitivity is limited because of its long discoloration time, wide discoloration range and hysteresis. Adhesives were necessary component in preparing the thermochromic textiles because of the lack of adhesion between the microcapsule and the surface of the fabric. However, most of the adhesives are polymer with poor thermal conductivity, which further reduced the thermochromic sensitivity of the fabric. Therefore, it is necessary to improve the color change sensitivity of thermochromic fabrics to broaden its application.

Method In this paper, fast response thermochromic fabrics were prepared by screen printing technology with a thermochromic slurry including Boron nitride nano sheets (BNNS), yellow thermochromic microcapsule, deionized water, adhesive and thickener. BNNS was adopted to improve the thermal conductivity of the thermochromic fabric, improving the temperature perception of the color chang core material.

Results BNNS were prepared by high-temperature oxidation and ultrasonic cell pulverization, whose properties were characterized by infrared spectroscopy, raman spectroscopy, X-ray spectroscopy and transmission electron microscope. The results showed that BNNS had a few layers structure with a mean particle size of 100-200 nm (Figs.1-3). A thermochromic printed fabric was prepared by screen printing technology with a thermochromic slurry including BNNS, deionized water, yellow thermochromic microcapsule (15%), adhesive (30%) and thickener (5%). The properties such as color performance and color change performance of thermochromic printed fabric were tested by colorimeter, digital camera and Adobe Photoshop CS software, and the influence of BNNS on these properties were investigated. The increase of BNNS content led to gradually decrease of the K/S value, reduction in the color change time, and narrowing of the color change range. When the content of BNNS was 2%, the performance of color performance and color change performance were generally the best, with the K/S value of 1.8 (Fig.5), the color change time of 8 s, the recoloration time of 13 s (Fig.7), the color change range of 31.4-37.2 ℃, and the recovery color range of 28.8-25.4 ℃ (Fig.8). Compared with the thermochromic fabric without BNNS, the color change time was shortened by 20%, the recoloration time shortened by 10.3%, the color change range reduced by 1.6 ℃, and the recoloration range reduced by 0.4 ℃ (Fig.8). In addition, BNNS content demonstrated little influence on the color fastness of thermochromic textiles. The color fastness to dry and wet rubbing and washing of the fast response color change fabric prepared are above grade 4 (Tab.1).

Conclusion The thermochromic printed fabric with fast response was prepared by screen printing technology with a thermochromic slurry including BNNS, yellow thermochromic microcapsule, adhesive and thickener. The relationship between the content of thermal conductive BNNS and the color property, color change property and fastness of thermochromic fabric were discussed. The results showed that when the content of BNNS is 2%, compared with the original thermochromic fabric, the fabric has shorter color change time (8 s), recoloration time (13 s), narrower color change range (5.8 ℃) and recoloration range (3.4 ℃). In addition, the doping of BNNS has little influence on the stability and color fastness of the thermochromic fabric, and the thermochromic fabric remains to have excellent color changeability after 200 cycles. However, BNNS is in a form of white powder, and its light scattering makes the fabric pale. Therefore, it is necessary to balance the relationship between discoloration performance and recoloration performance. In general, thermal conductive BNNS can effectively improve the color change sensitivity of thermochromic fabrics, and it also provides a new method of improving the color change sensitivity for other thermochromic materials.

Key words: thermochromism, boron nitride nanosheet, fast response, screen printing, intelligent textile, polyester/cotton fabric

中图分类号: 

  • TS101.8

图1

h-BN、BNO和BNNS的红外光谱图"

图2

h-BN和BNNS的拉曼光谱和XRD图"

图3

h-BN和BNNS的TEM照片"

图4

未处理的织物和温致变色织物表面形貌及元素分布"

图5

不同质量分数的BNNS掺杂型温致变色织物的K/S值"

图6

温致变色织物的颜色变化实物图"

图7

变色时间和复色时间与BNNS质量分数的关系"

图8

不同质量分数的BNNS掺杂型温致变色织物的ΔE与温度关系图"

图9

温致变色织物的热扩散系数与BNNS质量分数关系图"

图10

不同质量分数的BNNS掺杂型温致变色织物的变色循环性能"

表1

BNNS质量分数对温致变色织物色牢度的影响"

BNNS
质量分数/%
耐摩擦色牢度/级 耐水洗色牢度/级
干摩 湿摩 褪色 沾色
0 5 4~5 4~5 4~5
1 5 4~5 4~5 4~5
2 5 4~5 4~5 4~5
3 5 4 4~5 4~5
4 5 4 4~5 4~5
[1] SHENG M, ZHANG L, JIANG S, et al. Bioinspired electro-responsive multispectral controllable dye-doped liquid crystal yolk-shell microcapsules for advanced textiles[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13586-13595.
[2] 王亮, 马晓光, 李俊君, 等. 热敏变色微胶囊的变色色谱拓展及其应用[J]. 纺织学报, 2020, 41(9): 88-94.
WANG Liang, MA Xiaoguang, LI Junjun, et al. Development and application of color change chromatography with thermochromic microcapsules[J]. Journal of Textile Research, 2020, 41(9): 88-94.
[3] ŠTAFFOVÁ Martina, KUČERA František, TOCHÁČEK Jiří, et al. Insight into color change of reversible thermochromic systems and their incorporation into textile coating[J]. Journal of Applied Polymer Science, 2021, 138(4): 49724.
doi: 10.1002/app.v138.4
[4] 张瑜, 李群华, 李智勇. 感温变色材料在纺织品图案设计中的应用[J]. 纺织学报, 2016, 37(4): 49-53.
ZHANG Yu, LI Qunhua, LI Zhiyong. Application of thermochromic materials in textile pattern design[J]. Journal of Textile Research, 2016, 37(4): 49-53.
[5] TÖZÜM M Selda, AKSOY Sennur Alay, ALKAN Cemil. Manufacturing surface active shell and bisphenol a free thermochromic acrylic microcapsules for textile applications[J]. International Journal of Energy Research, 2021, 45(5): 7018-7037.
doi: 10.1002/er.v45.5
[6] 张凤, 管萍, 胡小玲. 有机可逆热致变色材料的变色机理及应用进展[J]. 材料导报, 2012, 26(9): 76-80.
ZHANG Feng, GUAN Ping, HU Xiaoling. Color-changing mechanism and application development of organic reversible thermochromic materials[J]. Materials Review, 2012, 26(9): 76-80.
[7] TÖZÜM M Selda, ALKAN Cemil, ALAY Aksoy Sennur. Preparation of poly(methyl methacrylate-co-ethylene glycol dimethacrylate-co-glycidyl methacrylate) walled thermochromic microcapsules and their application to cotton fabrics[J]. Journal of Applied Polymer Science, 2020, 137(24): 1-13.
[8] 王镛凯. 有机可逆温致变色微胶囊颜料的制备[D]. 天津: 天津科技大学, 2017: 46-47.
WANG Yongkai. Preparation of organic reversible thermochromic microcapsule pigment[D]. Tianjin: Tianjin University of Science and Technology, 2017: 46-47.
[9] 陈珊珊. 氮化硼纳米片/芳纶纳米纤维导热绝缘纸基材料的制备及性能研究[D]. 西安: 陕西科技大学, 2021: 8-9.
CHEN Shanshan. Study on preparation and properties of thermal conductive and insulating paper-based materials of boron nitride nanosheets/aramid nanofibers[D]. Xi'an: Shaanxi University of Science and Technology, 2021: 8-9.
[10] WANG D, MU X, CAI W, et al. Constructing phosphorus, nitrogen, silicon-co-contained boron nitride nanosheets to reinforce flame retardant properties of unsaturated polyester resin[J], Composites Part A: Applied Science and Manufacturing, 2018, 109: 546-554.
doi: 10.1016/j.compositesa.2018.04.003
[11] 张婉, 籍晓倩, 殷允杰, 等. 用溶胶微球法制备变色涤纶织物的温致变色机制及其性能[J]. 纺织学报, 2017, 38(2): 117-122.
ZHANG Wan, JI Xiaoqian, YIN Yunjie, et al. Thermochromic mechanism and performance of polyester fabric based on sol-microsphere process[J]. Journal of Textile Research, 2017, 38(2): 117-122.
[1] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[2] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[3] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[4] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[5] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[6] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[7] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[8] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[9] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[10] 张帆, 张国波, 赵宇新, 张儒, 阳海, 王世豪, 汪南方. 催化氧化皂洗在涤纶/棉织物一浴染色中的应用[J]. 纺织学报, 2021, 42(09): 97-103.
[11] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[12] 徐晋, 杨鹏程, 肖渊, 胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量[J]. 纺织学报, 2021, 42(07): 137-143.
[13] 王航, 王冰心, 宁新, 曲丽君, 田明伟. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(06): 189-197.
[14] 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70.
[15] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!