纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 198-204.doi: 10.13475/j.fzxb.20211205201
纪越1,2(), 潘东1,2, 马杰东1,2, 宋丽梅1,2, 董九志1,3
JI Yue1,2(), PAN Dong1,2, MA Jiedong1,2, SONG Limei1,2, DONG Jiuzhi1,3
摘要:
为提高运动纱线张力检测精确性,解决接触式测量引起的摩擦力误差、断头等织物问题,采用振动频率和图像处理方法来分析纱线张力,设计一种基于机器视觉的纱线张力非接触检测系统。检测系统由纱线传送装置、工业线阵相机、白色线光源、伺服控制电动机、张力传感器组成。根据弦线悬链性理论建立纱线运动模型,结合纱线图像处理算法,寻找纱线图像上边界作为特征线计算其张力,结果表明:通过像素折算出的振动频率与实际张力拟合优度达0.99,在张力区间为5~30 cN以内,视觉系统测量值与张力传感器测量值相对误差率在±10%左右,非接触检测系统检测精度满足生产要求,避免了接触式测量存在的易磨损、稳定性较差等问题。
中图分类号:
[1] | 刘行, 缪旭红, 赵帅权. 纱线张力测试方法研究进展[J]. 棉纺织技术, 2015, 43(1):78-82. |
LIU Xing, MIAO Xuhong, ZHAO Shuaiquan. Research progress of yarn tension testing methods[J]. Cotton Textile Technology, 2015, 43(1):78-82. | |
[2] | 庾在海, 吴文英, 陈瑞琪. 纺织过程中的纱线张力测试方法[J]. 传感器世界, 2004(1):27-29. |
YU Zaihai, WU Wenying, CHEN Ruiqi. Yarn tension testing method in the textile process[J]. Sensor World, 2004(1):27-29. | |
[3] | Protechna Herbst GmbH & Co.KG. Device for determining the yarn tension of a single yarn in a yarn sheet in textile processing:DE102004046998A1[P]. 2004-2-28. |
[4] | 熊秋元, 高晓平. 纱线张力检测与控制技术的研究现状与展望[J]. 棉纺织技术 2011, 39(6):65-68. |
XIONG Qiuyuan, GAO Xiaoping. Research status and prospects of yarn tension detection and control technology[J]. Cotton Textile Technology 2011, 39(6):65-68. | |
[5] | 吴成进, 陈跃华. 纱线速度的非接触式测量方法的研究[J]. 纺织学报, 2001, 22(1):15-17,2. |
WU Chengjin, CHEN Yuehua. Research on the non-contact measurement method of yarn speed[J]. Journal of Textile Research, 2001, 22(1):15-17,2. | |
[6] |
ZHANG D, MA Q, TAN Y, et al. Non-contact detection of polyester filament yarn tension in the spinning process by the laser Doppler vibrometer method[J]. Textile Research Journal, 2022, 92(5-6): 919-928.
doi: 10.1177/00405175211034246 |
[7] | 曹飞. 基于图像处理的纱线检测系统[D]. 武汉: 武汉理工大学, 2009:28-30. |
CAO Fei. Image processed based yarn detection system[D]. Wuhan: Wuhan University of Technology, 2009:28-30. | |
[8] | 缪宇轩, 孟祥益, 夏港东, 等. 非接触式纱线张力监测系统的研制与开发[J]. 毛纺科技, 2020, 48(5):71-76. |
MIAO Yuxuan, MENG Xiangyi, XIA Gangdong, et al. Research and development of non-contact yarn tension monitoring system[J]. Wool Textile Journal, 2020, 48(5):71-76. | |
[9] | 张楠, 景军锋. 基于机器视觉的纱线张力检测方法[C]// 2016全国针织技术交流会论文集. 无锡: [出版者不详], 2016:121-124. |
ZHANG Nan,JING Junfeng. Yarn tension detection method based on machine vision[C] //Proceedings of 2016 National Knitting Technology Exchange Conference. Wuxi: [s.n.] 2016:121-124. | |
[10] | HAGEDORN P, DASGUPTA A. Vibrations and waves in continuous mechanical systems[M]. [s.n.]John Wiley & Sons, 2007: 28-32. |
[11] | 张能辉, 王建军, 程昌钧. 轴向变速运动粘弹性弦线横向振动的复模态 Galerkin 方法[J]. 应用数学和力学, 2007, 28(1):1-8. |
ZHANG Nenghui, WANG Jianjun, CHENG Changjun. Complex mode Galerkin method for lateral vibration of viscoelastic string in axial variable speed motion[J]. Applied Mathematics and Mechanics, 2007, 28(1):1-8.
doi: 10.1007/s10483-007-0101-x |
|
[12] |
CHUNG J, HAN C S. Vibration of an axially moving string with geometric non-linearity and translating acceleration[J]. Journal of Sound and Vibration, 2001, 240(4):733-746.
doi: 10.1006/jsvi.2000.3241 |
[13] | 周泰. 用谐振频率测量纺丝张力的研究[J]. 自动化仪表, 1987(9):12-15,36. |
ZHOU Tai. Research on measuring spinning tension with resonance frequency[J]. Automation Instrumentation, 1987(9):12-15,36. | |
[14] | 林红. 运动纱线的动力学行为与控制[D]. 苏州: 苏州大学, 2014:12-18. |
LIN Hong. Kinetic behavior and control of motion yarns[D]. Suzhou: Soochow University, 2014:12-18. | |
[15] | 田硕. 弦振动偏微分方程的求解[J]. 科学咨询(科技·管理), 2015(8):68-69. |
TIAN Shuo. Solving partial differential equations of string vibration[J]. Scientific Consultation, 2015(8):68-69. | |
[16] | 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社, 2002: 28-32. |
YU Weidong, CHU Caiyuan. Textile physics[M]. Shanghai: Donghua University Press, 2002:28-32. | |
[17] | 张开明. 弦振动的研究[J]. 太原师范学院学报(自然科学版), 2010, 9(4):96-99. |
ZHANG Kaiming. Research on string vibration[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2010, 9(4):96-99. | |
[18] |
WANG Qing, LU Changhou, HUANG Ran, et al. Computer vision for yarn micro tension measure-ment[J]. Applied Optics, 2016, 55(9):2393-2398.
doi: 10.1364/AO.55.002393 |
[19] | 牟新刚, 蔡逸超, 周晓, 等. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(1):39-145. |
MOU Xingang, CAI Yichao, ZHOU Xiao, et al. On-line inspection system for cheese defects based on machine vision[J]. Journal of Textile Research, 2018, 39(1):139-145. | |
[20] | 刘亚梅. 基于梯度边缘最大值的图像清晰度评价[J]. 图学学报, 2016, 37 (2):97-102. |
LIU Yamei. Evaluation of image sharpness based on the maximum value of gradient edge[J]. Journal of Graphics, 2016, 37 (2):97-102. | |
[21] | 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(6):141-146. |
ZHANG Jianxin, LI Qi. On-line inspection system for cheese density based on machine vision[J]. Journal of Textile Research, 2020, 41(6):141-146. |
[1] | 陶静, 汪俊亮, 徐楚桥, 张洁. 基于视觉校准的环锭纺细纱条干特征在线提取方法[J]. 纺织学报, 2023, 44(04): 70-77. |
[2] | 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135. |
[3] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
[4] | 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172. |
[5] | 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139. |
[6] | 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169. |
[7] | 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206. |
[8] | 郭敏, 高卫东, 朱博, 刘建立, 郭明瑞. 模拟织造状态下的浆纱耐磨性能测试方法[J]. 纺织学报, 2021, 42(11): 46-50. |
[9] | 郑宝平, 蒋高明, 夏风林, 张爱军. 基于模型预测的经编送经动态张力补偿系统设计[J]. 纺织学报, 2021, 42(09): 163-169. |
[10] | 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200. |
[11] | 田宇航, 王绍宗, 张文昌, 张倩. 基于机器视觉的单组分染液浓度快速检测方法[J]. 纺织学报, 2021, 42(03): 115-121. |
[12] | 冯文倩, 李新荣, 杨帅. 人体轮廓机器视觉检测算法的研究进展[J]. 纺织学报, 2021, 42(03): 190-196. |
[13] | 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163. |
[14] | 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146. |
[15] | 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57. |
|