纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 198-204.doi: 10.13475/j.fzxb.20211205201

• 机械与器材 • 上一篇    下一篇

基于机器视觉的弦振动纱线张力非接触检测系统

纪越1,2(), 潘东1,2, 马杰东1,2, 宋丽梅1,2, 董九志1,3   

  1. 1.天津工业大学 控制科学与工程学院, 天津 300387
    2.天津工业大学 天津市电气装备智能控制重点实验室, 天津 300387
    3.天津工业大学 机械工程学院, 天津 300387
  • 收稿日期:2021-12-24 修回日期:2022-05-27 出版日期:2023-05-15 发布日期:2023-06-09
  • 作者简介:纪越(1990—),女,副教授,博士。主要研究方向为先进传感理论与检测技术。E-mail:jiyue@tiangong.edu.cn
  • 基金资助:
    国家自然科学基金项目(62173245)

Yarn tension non-contacts detection system on string vibration based on machine vision

JI Yue1,2(), PAN Dong1,2, MA Jiedong1,2, SONG Limei1,2, DONG Jiuzhi1,3   

  1. 1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China
    3. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-12-24 Revised:2022-05-27 Published:2023-05-15 Online:2023-06-09

摘要:

为提高运动纱线张力检测精确性,解决接触式测量引起的摩擦力误差、断头等织物问题,采用振动频率和图像处理方法来分析纱线张力,设计一种基于机器视觉的纱线张力非接触检测系统。检测系统由纱线传送装置、工业线阵相机、白色线光源、伺服控制电动机、张力传感器组成。根据弦线悬链性理论建立纱线运动模型,结合纱线图像处理算法,寻找纱线图像上边界作为特征线计算其张力,结果表明:通过像素折算出的振动频率与实际张力拟合优度达0.99,在张力区间为5~30 cN以内,视觉系统测量值与张力传感器测量值相对误差率在±10%左右,非接触检测系统检测精度满足生产要求,避免了接触式测量存在的易磨损、稳定性较差等问题。

关键词: 纱线张力, 非接触式检测, 弦线振动, 张力传感器, 机器视觉

Abstract:

Objective The objective of the research on the non-contact detection system for yarn tension based on machine vision is to improve the accuracy of tension detection for moving yarns. The current contact tension measurement makes direct contact with yarn during the detection process, which causes additional friction to the yarn and wears the measuring device at the same time, affecting the accuracy of tension measurement. The machine vision technology provides a new direction for yarn tension detection. Based on string vibration theory and machine vision image processing method, this poper aimed to study and design a non-contact detection system for yarn tension based on machine vision to achieve accurate tension detection.

Method In order to investigate the relationship between yarn tension and vibration frequency in non-contact detection, the yarn in transverse vibration in the system was regarded as string vibration, and a mathematical model of yarn tension and vibration frequency was established and the theoretical relationship was derived. The yarn winding motion device was designed, the camera shooting field of view was planned, and the yarn tightening roller was designed to make the yarn vibrate freely in the detection range. A line array industrial camera was selected to complete the yarn image acquisition, and the strip light source was adopted to assist the illumination. A series of image pre-processing was carried out to smooth out the yarn image noise, edge extraction was selected to obtain the upper boundary of the image, and the frequency was calculated from the peaks and valleys of two adjacent frames to measure the yarn tension.

Results In order to verify the accuracy of yarn tension measurement, test experiments were conducted using the constructed detection device, where the yarn was wound around the winding roller and placed in the middle of the pulley and clamping roller (Fig.7). A tension sensor was used for tension detection comparison, the yarn guide roller and the winding roller were driven by servo motors, and the line array light source provided stable light. The frame rate of the image acquisition by the line array camera was set to 100 frames per second, and the exposure time was 100 ms. Three strands of Kevlar yarn were used in the experiment, where the yarn length was 50 m, the yarn linear density was 8.2 tex, and the yarn diameter was 0.6 mm. During the experiment, the yarn moved at about 25 m/min, the winding speed of the winding roller motor was 180 r/min, and the winding speed of the clamping roller motor was 98.2 r/min. The fitted line of yarn vibration frequency and tension showed, where it was evident that according to the time sequence, the measured value of the tension sensor correponds to that of the vision measurement system (Fig.9). The results showed that yarn frequency was positively correlated with yarn tension, and the yarn vibration frequency was quadratically related to yarn tension, and the correlation coefficient of the fit reached 0.992. The deviation of the system measured values and the sensor measured values were different, and the collected frequency information effectively reflect the stability of the yarn tension was indicated (Tab.1 and Fig.10). The results showed that the current tension of the moving yarn determined by the vibration frequency is within the tension range of 5-30 cN, and the relative error rate between the visual system measured value and the tension sensor measured value was about ±10%.

Conclusion When the yarn running state changes, the yarn moving speed will also change and so will the measurement value of the vision system. In the vision measurement system, when the yarn runs to the winding roller and clamping roller, the yarn is subjected to a relatively large force. When the yarn runs to the middle, the yarn tends to run smoothly and the tension will be relatively uniform, causing the detected yarn tension to fluctuate within a certain range. The non-contact yarn tension detection does not directly contact the yarn and will not change the original force state of the yarn. Theoretically, the measurement accuracy is higher than the direct contact method, which proves the feasibility of the non-contact detection system to complete the yarn tension measurement and has reference significance for the research of non-contact detection of yarn tension and has a broad prospect in engineering application.

Key words: yarn tension, non-contact detection, string vibration, tension sensor, machine vision

中图分类号: 

  • TS103.7

图1

弦线振动坐标系"

图2

检测系统机械结构图"

图3

相机采集纱线图像示意图"

图4

相机视野范围"

图5

算法处理纱线图像"

图6

实验平台"

图7

不同像素大小的截取图像"

表1

纱线张力值相对误差"

接触式张力传感器
测量值/cN
视觉系统
测量值/cN
相对误差/%
5± 0.05 5.40 8.00
7.5± 0.05 7.79 3.80
10± 0.05 9.77 -2.30
12.5± 0.05 12.45 -0.40
15± 0.05 15.10 0.66
17.5± 0.05 15.90 -9.14
20± 0.05 20.40 1.71
25± 0.05 23.80 -4.80

图8

纱线振动频率与张力拟合线"

图9

视觉系统测量值与张力传感器测量值对比"

[1] 刘行, 缪旭红, 赵帅权. 纱线张力测试方法研究进展[J]. 棉纺织技术, 2015, 43(1):78-82.
LIU Xing, MIAO Xuhong, ZHAO Shuaiquan. Research progress of yarn tension testing methods[J]. Cotton Textile Technology, 2015, 43(1):78-82.
[2] 庾在海, 吴文英, 陈瑞琪. 纺织过程中的纱线张力测试方法[J]. 传感器世界, 2004(1):27-29.
YU Zaihai, WU Wenying, CHEN Ruiqi. Yarn tension testing method in the textile process[J]. Sensor World, 2004(1):27-29.
[3] Protechna Herbst GmbH & Co.KG. Device for determining the yarn tension of a single yarn in a yarn sheet in textile processing:DE102004046998A1[P]. 2004-2-28.
[4] 熊秋元, 高晓平. 纱线张力检测与控制技术的研究现状与展望[J]. 棉纺织技术 2011, 39(6):65-68.
XIONG Qiuyuan, GAO Xiaoping. Research status and prospects of yarn tension detection and control technology[J]. Cotton Textile Technology 2011, 39(6):65-68.
[5] 吴成进, 陈跃华. 纱线速度的非接触式测量方法的研究[J]. 纺织学报, 2001, 22(1):15-17,2.
WU Chengjin, CHEN Yuehua. Research on the non-contact measurement method of yarn speed[J]. Journal of Textile Research, 2001, 22(1):15-17,2.
[6] ZHANG D, MA Q, TAN Y, et al. Non-contact detection of polyester filament yarn tension in the spinning process by the laser Doppler vibrometer method[J]. Textile Research Journal, 2022, 92(5-6): 919-928.
doi: 10.1177/00405175211034246
[7] 曹飞. 基于图像处理的纱线检测系统[D]. 武汉: 武汉理工大学, 2009:28-30.
CAO Fei. Image processed based yarn detection system[D]. Wuhan: Wuhan University of Technology, 2009:28-30.
[8] 缪宇轩, 孟祥益, 夏港东, 等. 非接触式纱线张力监测系统的研制与开发[J]. 毛纺科技, 2020, 48(5):71-76.
MIAO Yuxuan, MENG Xiangyi, XIA Gangdong, et al. Research and development of non-contact yarn tension monitoring system[J]. Wool Textile Journal, 2020, 48(5):71-76.
[9] 张楠, 景军锋. 基于机器视觉的纱线张力检测方法[C]// 2016全国针织技术交流会论文集. 无锡: [出版者不详], 2016:121-124.
ZHANG Nan,JING Junfeng. Yarn tension detection method based on machine vision[C] //Proceedings of 2016 National Knitting Technology Exchange Conference. Wuxi: [s.n.] 2016:121-124.
[10] HAGEDORN P, DASGUPTA A. Vibrations and waves in continuous mechanical systems[M]. [s.n.]John Wiley & Sons, 2007: 28-32.
[11] 张能辉, 王建军, 程昌钧. 轴向变速运动粘弹性弦线横向振动的复模态 Galerkin 方法[J]. 应用数学和力学, 2007, 28(1):1-8.
ZHANG Nenghui, WANG Jianjun, CHENG Changjun. Complex mode Galerkin method for lateral vibration of viscoelastic string in axial variable speed motion[J]. Applied Mathematics and Mechanics, 2007, 28(1):1-8.
doi: 10.1007/s10483-007-0101-x
[12] CHUNG J, HAN C S. Vibration of an axially moving string with geometric non-linearity and translating acceleration[J]. Journal of Sound and Vibration, 2001, 240(4):733-746.
doi: 10.1006/jsvi.2000.3241
[13] 周泰. 用谐振频率测量纺丝张力的研究[J]. 自动化仪表, 1987(9):12-15,36.
ZHOU Tai. Research on measuring spinning tension with resonance frequency[J]. Automation Instrumentation, 1987(9):12-15,36.
[14] 林红. 运动纱线的动力学行为与控制[D]. 苏州: 苏州大学, 2014:12-18.
LIN Hong. Kinetic behavior and control of motion yarns[D]. Suzhou: Soochow University, 2014:12-18.
[15] 田硕. 弦振动偏微分方程的求解[J]. 科学咨询(科技·管理), 2015(8):68-69.
TIAN Shuo. Solving partial differential equations of string vibration[J]. Scientific Consultation, 2015(8):68-69.
[16] 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社, 2002: 28-32.
YU Weidong, CHU Caiyuan. Textile physics[M]. Shanghai: Donghua University Press, 2002:28-32.
[17] 张开明. 弦振动的研究[J]. 太原师范学院学报(自然科学版), 2010, 9(4):96-99.
ZHANG Kaiming. Research on string vibration[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2010, 9(4):96-99.
[18] WANG Qing, LU Changhou, HUANG Ran, et al. Computer vision for yarn micro tension measure-ment[J]. Applied Optics, 2016, 55(9):2393-2398.
doi: 10.1364/AO.55.002393
[19] 牟新刚, 蔡逸超, 周晓, 等. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(1):39-145.
MOU Xingang, CAI Yichao, ZHOU Xiao, et al. On-line inspection system for cheese defects based on machine vision[J]. Journal of Textile Research, 2018, 39(1):139-145.
[20] 刘亚梅. 基于梯度边缘最大值的图像清晰度评价[J]. 图学学报, 2016, 37 (2):97-102.
LIU Yamei. Evaluation of image sharpness based on the maximum value of gradient edge[J]. Journal of Graphics, 2016, 37 (2):97-102.
[21] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(6):141-146.
ZHANG Jianxin, LI Qi. On-line inspection system for cheese density based on machine vision[J]. Journal of Textile Research, 2020, 41(6):141-146.
[1] 陶静, 汪俊亮, 徐楚桥, 张洁. 基于视觉校准的环锭纺细纱条干特征在线提取方法[J]. 纺织学报, 2023, 44(04): 70-77.
[2] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[3] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[4] 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172.
[5] 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139.
[6] 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169.
[7] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[8] 郭敏, 高卫东, 朱博, 刘建立, 郭明瑞. 模拟织造状态下的浆纱耐磨性能测试方法[J]. 纺织学报, 2021, 42(11): 46-50.
[9] 郑宝平, 蒋高明, 夏风林, 张爱军. 基于模型预测的经编送经动态张力补偿系统设计[J]. 纺织学报, 2021, 42(09): 163-169.
[10] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200.
[11] 田宇航, 王绍宗, 张文昌, 张倩. 基于机器视觉的单组分染液浓度快速检测方法[J]. 纺织学报, 2021, 42(03): 115-121.
[12] 冯文倩, 李新荣, 杨帅. 人体轮廓机器视觉检测算法的研究进展[J]. 纺织学报, 2021, 42(03): 190-196.
[13] 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163.
[14] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[15] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!