纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 63-69.doi: 10.13475/j.fzxb.20211200501

• 纤维材料 • 上一篇    下一篇

全生物基聚呋喃二甲酸丙二醇酯及其纤维制备与性能

赫爽1, 孙莉娜1, 胡红梅1, 朱瑞淑1, 俞建勇2, 王学利2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2021-12-02 修回日期:2022-05-24 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 王学利(1968—),男,教授级高级工程师。主要研究方向为差别化、功能化化学纤维。E-mail:wxl@dhu.edu.cn。
  • 作者简介:赫爽(1996—),女,硕士。主要研究方向为生物基聚酯合成及纺丝。

Synthesis and fiber fabrication of fully biobased polytrimethylene furandicarboxylate

HE Shuang1, SUN Li'na1, HU Hongmei1, ZHU Ruishu1, YU Jianyong2, WANG Xueli2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2021-12-02 Revised:2022-05-24 Published:2023-05-15 Online:2023-06-09

摘要:

为促进生物基聚酯在纺织领域的应用,采取酯交换-熔融缩聚法,使用醋酸锌-钛酸四丁酯为组合催化剂,制备了全生物基聚呋喃二甲酸丙二醇酯(PTF)。借助红外光谱仪、核磁共振波谱仪、差示扫描量热仪、热重分析仪等表征了PTF的化学结构和热性能;通过二步法纺丝工艺制备了PTF纤维,并研究了不同牵伸倍数对纤维的力学性能影响。结果表明:成功合成的目标产物PTF的数均分子质量达到35 000 g/mol,玻璃化转变温度为60~62 ℃,熔点约为171 ℃,起始热分解温度高于370 ℃,具有良好的热稳定性;初生纤维牵伸至2.5倍时,PTF纤维的断裂伸长率为34.2%左右,断裂强度为0.48 cN/dtex。

关键词: 生物基材料, 聚呋喃二甲酸丙二醇酯, 合成工艺, 熔融纺丝, 酯交换-熔融缩聚法, 热性能

Abstract:

Objective Polyester industry is an important industry relating to the national economy and the people's livelihood. Most polyesters are prepared from petroleum and other fossil resources as raw materials. The combustion process of polyester will produce a large amount of carbon dioxide and sulfur dioxide, which not only pollute the environment, but also lead to global warming, climate change and other serious problems. In order to further implement the sustainable development and the promote China's ″double carbon″ strategic goal, it is urgent to minimise the dependence on fossil energy. In 2004, the US Department of Energy released 12 platform compounds derived from biomass that can be converted into high value-added biobased materials. Among them, the chemical structure of 2,5-furanedicarboxylic acid (FDCA) is similar to petroleum based terephthalic acid (PTA), which can be used as an ideal biobased substitute for PTA. With the maturity of the synthesis and purification technology of FDCA, furan based polyester has attracted attention in various fields, becoming a key research direction of biobased high molecular materials. This research focus is on the study of furan based homopolymers and copolymers.

Method In this research, the use conditions of zinc acetate tetrabutyl titanate composite catalyst were optimized using 1,3-PDO and DMFD as raw materials. The full biological PTF with high molecular weight was synthesized by transesterification melt polycondensation. The chemical structure and thermal properties of the PTF were characterized by infrared spectroscopy, nuclear magnetic resonance hydrogen spectroscopy, differential scanning calorimetry and thermogravimetry, the biobased PTF fibers were prepared by two-step spinning process(UDY-DT), and the influences of different drafting ratios on the mechanical properties of the fibers were studied.

Results In the process of adjusting the reaction process, it was found that only zinc acetate was added in the esterification stage, and tetrabutyl titanate was added in the polycondensation stage. The alcohol ester ratio was increased to 2.6, which would synchronously reduce the transesterification reaction time (Tab. 1). The analysis of the chemical structure of the product showed that the target product PTF (Figs.3 and 4) was successfully synthesized, and the number average molecular weight of the prepared product reached 3.25 × 104 g/mol, the PDI was controlled below 3 (Tab. 4), and the chip color was light yellow. It is believed that the optimal use conditions of the combined catalyst were found. The glass transition temperature of the synthesized product was 60-62 ℃, the melting point was about 171 ℃, and the initial thermal decomposition temperature was higher than 370 ℃ (Tab.5). With the primary fiber drawn to 2.5 times, the elongation at break of PTF fiber was about 34.2%, and the breaking strength was 0.48 cN/dtex (Tab. 6).

Conclusion The whole biological PTF fiber was successfully prepared by UDY-DT two-step method. After 2.5 times of drafting, the elongation at break of the fiber was 34%, and the breaking strength was 0.48 cN/dtex. Owing to wide molecular weight distribution of PTF, relatively low breaking strength of prepared PEF fiber, and yellow color of polymer and fiber, further optimization and improvement of synthesis and spinning process are required in future research work.

Key words: fully biobased material, polytrimethylene furandicarboxylate, synthesis process, melt spinning, transesterification melt polycondensation, thermal performance

中图分类号: 

  • TQ323.4

图1

PTF的反应流程"

表1

PTF合成条件"

样品
编号
醇酯比 酯交换阶段 缩聚阶段
催化剂 反应过程 催化剂 反应过程
1# 2.2 醋酸锌、
Ti(OBu)4
分别在125 ℃反应1 h,150 ℃反应2 h,160 ℃反应2 h,170 ℃反应0.5 h,175 ℃反应0.5 h 分别在220 ℃反应2.5 h,230 ℃反应3 h,235 ℃反应0.5 h
2# 2.2 醋酸锌 分别在125 ℃反应1 h,150 ℃反应2 h,160 ℃反应2 h,170 ℃反应2 h,175 ℃反应1 h Ti(OBu)4 分别在220 ℃反应2 h,230 ℃反应3 h,235 ℃反应0.5 h
3# 2.6 醋酸锌 分别在125 ℃反应1 h,150 ℃反应2 h,160 ℃反应1 h,170 ℃反应1 h,175 ℃反应0.5 h Ti(OBu)4 分别在220 ℃反应2 h,230 ℃反应2 h,235 ℃反应1.5 h
4# 2.6 醋酸锌 分别在125 ℃反应1 h,150 ℃反应2 h,160 ℃反应1 h,170 ℃反应2.5 h,175 ℃反应1 h Ti(OBu)4 分别在220 ℃反应2 h,230 ℃反应2 h,235 ℃反应3 h

表2

UDY纺丝工艺参数"

纺丝组件 温度/℃ 纺丝组件 速度/(m·min-1)
螺杆区域 240 导盘1 600
260 导盘2 650
260 导盘4 670
计量泵/管道/箱体 260 卷绕机 650

表3

牵伸工艺参数"

牵伸倍数 牵伸部件 速度/(m·min-1) 温度/℃
1.5 GR1 333 50
GR2 500 100
导盘4 520
卷绕机 500
2.0 GR1 250 50
GR2 500 100
导盘4 520
卷绕机 500
2.5 GR1 200 50
GR2 500 100
导盘4 520
卷绕机 500

图2

纺丝与牵伸示意图"

表4

PTF的特性黏数、数均分子量及多分散指数"

样品
编号
特性黏数[η]/
(dL·g-1)
Mn/
(g·mol-1)
PDI值
1# 0.86 34 500 4.16
2# 0.62 29 500 2.72
3# 0.78 32 500 2.91
4# 0.88 35 700 2.99

图3

PTF和BHTF的红外光谱图"

图4

PTF的核磁共振氢谱图"

图5

PTF的第1次降温和第2次升温DSC曲线"

表5

PTF的DSC和TG测试数据"

样品编号 Tg/℃ Tm/℃ T5%/℃ Tmax/℃ Tend/℃ 残炭量/%
1# 62 171 377 420 396 7.15
2# 60 377 419 396 4.54
3# 62 381 419 392 6.95
4# 61 378 421 396 6.55

图6

PTF的TG和DTG曲线"

表6

PTF纤维的性能数据"

牵伸
倍数
线密度/dtex 断裂伸
长率/%
断裂强度/
(cN·dtex-1)
初始模量/
(cN·dtex-1)
取向因子 色度值
L* a* b*
1.5 363.6 76.0 0.37 6.48 0.18 79.16 0.06 14.22
2.0 278.3 56.6 0.45 6.84 0.20
2.5 212.6 34.2 0.48 6.30 0.34
[1] 张珉. “双碳”战略的意义与机遇[J]. 企业观察家, 2021(6): 40-41.
ZHANG Min. The significance and opportunities of the ″Double Carbon″ strategy[J]. Enterprise Observer, 2021(6): 40-41.
[2] WERPY T, PETERSEN G. Volume I:results of screening for potential candidates from sugars and synthesis gas[R]. Colorado: National Renewable Energy Laboratory, 2004: 21-64.
[3] 周佳栋, 曹飞, 余作龙, 等. 生物基聚酯单体2,5-呋喃二甲酸的制备及应用研究进展[J]. 高分子学报, 2016(1): 1-13.
ZHOU Jiadong, CAO Fei, YU Zuolong, et al. Progress in the preparation and application of bio-based polyester monomer 2,5-furandicarboxylic acid[J]. Acta Polymerica Sinica, 2016(1): 1-13.
[4] 蓝丹. 2,5-呋喃二甲酸基聚酯的制备与性能研究[D]. 无锡: 江南大学, 2012:15-28.
LAN Dan. Synthesis and properties of polyester based on 2,5-furandicarboxylic acid[D]. Wuxi: Jiangnan University, 2012: 15-28.
[5] JIANG M, LIU Q, ZHANG Q, et al. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(5): 1026-1036.
doi: 10.1002/pola.25859
[6] GOMES M, GANDINI A, SILVESTRE A, et al. Synthesis and characterization of poly(2,5-furan dicar-boxylate)s based on a variety of diols[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(17): 3759-3768.
doi: 10.1002/pola.24812
[7] GUIDOTTI G, GENOVESE L, SOCCIO M, et al. Block copolyesters containing 2,5-furan and trans-1,4-cyclo-hexane subunits with outstanding gas barrier proper-ties[J]. International Journal of Molecular Sciences, 2019. DOI:10.3390/ijms20092187.
doi: 10.3390/ijms20092187
[8] 赫爽. 生物基聚呋喃二甲酸二醇酯的合成及纤维的制备与表征[D]. 上海: 东华大学, 2022:34-62.
HE Shuang. Preparation and characterization of biobased poly(dihydric alcohol 2,5-furandicarboxylate) and fibers[D]. Shanghai: Donghua University, 2022: 34-62.
[9] 黄象安, 张文中. 用声脉冲法测定纤维取向度和模量的研究[J]. 合成纤维, 1981(2): 24-31.
HUANG Xiang'an, ZHANG Wenzhong. Study on determination of fiber orientation and modulus by acoustic pulse method[J]. Synthetic Fiber in China, 1981 (2): 24-31.
[10] 朱金权. 浅谈国产催化剂钛酸四丁酯对PBT树脂生产的影响[J]. 合成纤维工业, 2020, 43(2): 71-74.
ZHU Jinquan. Effect of domestic catalyst tetrabutyl titanate on PBT resin production[J]. China Synthetic Fiber Industry, 2020, 43(2): 71-74.
[11] KWIATKOWSKA M, KOWALCZYK I, KWIATKOWSKI K, et al. Fully biobased multiblock copolymers of furan-aromatic polyester and dimerized fatty acid: synthesis and characterization[J]. Polymer, 2016(99): 503-512.
[12] PAPAGEORIOU G Z, PAPAGEORIOU D G, TSANAKTSIS V, et al. Synthesis of the bio-based polyester poly(propylene 2,5-furan dicarboxylate)comparison of thermal behavior and solid state structure with its terephthalate and naphthalate homo-logues[J]. Polymer, 2015(62): 28-38.
[13] 吴佳萍. 生物基聚呋喃二甲酸乙二醇酯的合成及链结构和结晶性调控[D]. 杭州: 浙江大学, 2017:67-101.
WU Jiaping. Bio-based polyfurandi synthesis of ethy-lene glycol formate and regulation of chain structure and crystallinity[D]. Hangzhou: Zhejiang University, 2017: 67-101.
[1] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[2] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[3] 钱娟, 谢婷, 张佩华, 付少举. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(07): 60-66.
[4] 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186.
[5] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[6] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[7] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[8] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[9] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[10] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[11] 王亚宁, 周楚帆, 乌婧, 王华平. 生物基异己糖醇聚酯的制备及其构效关系研究进展[J]. 纺织学报, 2021, 42(08): 8-16.
[12] 王晶晶, 陈咏, 王朝生, 王华平, 边树昌, 乌婧. 生物基聚对苯二甲酸丙二醇酯低聚物的提取及其热性能[J]. 纺织学报, 2020, 41(06): 1-7.
[13] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
[14] 魏海江, 江力, 张顺花. 耐高温相变蜡/聚丙烯共混物的制备及其性能[J]. 纺织学报, 2019, 40(06): 8-13.
[15] 刘金鑫, 张海峰, 张星, 黄晨, 郑晓冰, 靳向煜. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(05): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!