纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 121-128.doi: 10.13475/j.fzxb.20211106001

• 纺织工程 • 上一篇    下一篇

织物表面激光打标工艺参数的数值模拟及选取方法

连力平1, 杨鹏程1,2(), 余子健1, 龙阳昭1, 肖渊1,2   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710600
  • 收稿日期:2021-11-11 修回日期:2023-01-10 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 杨鹏程
  • 作者简介:连力平(1996—),男,硕士生。主要研究方向为织物表面激光打标工艺。
  • 基金资助:
    陕西省科技厅自然科学基础研究计划-面上项目(2022JM-219);西安市现代智能纺织装备重点实验室建设项目(2019220614SYS021CG043)

Numerical simulation for selecting laser parameters in marking process with different fabrics

LIAN Liping1, YANG Pengcheng1,2(), YU Zijian1, LONG Yangzhao1, XIAO Yuan1,2   

  1. 1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710600, China
  • Received:2021-11-11 Revised:2023-01-10 Published:2023-06-15 Online:2023-07-20
  • Contact: YANG Pengcheng

摘要:

织物打标中,激光器的速度及能量密度等参数直接影响着打标效果。为深入研究激光打标织物表面的烧蚀机制及其工艺优化参数的选取,通过建立激光与不同织物基底之间的相变传热模型,对打标过程中温度场和材料去除量的变化进行了数值模拟,利用热扩散理论分析了打标工艺参数对打标结果的影响规律。结果表明:在瞬态变化过程中,所需的激光能量密度与平均升温速率及打标深度呈线性关系;所需的激光移动速度与平均升温速率正相关,与打标的宽度、深度负相关。基于打标深度,提出了激光参数的选取方法,进行了不同织物基底的激光打标实验,并结合光表面作用理论,分析了相关误差,验证了本文提出的打标宽度随激光能量密度和移动速度变化规律的正确性。

关键词: 激光打标, 激光参数, 非稳态, 纺织材料, 数值模拟, 打标工艺

Abstract:

Objective Laser marking, which has the advantages of being durable, waterproof and non-contact, is an effective method for recording commodity data and decorating textile products. In the marking process, the laser speed and energy density directly affect the marking effect. The laser energy density and movement speed often show different effects on the fabric substrates owing to the optical and thermal properties. This research aim to optimize the laser marking parameters for the best marking result.
Method To solve this issue, three fabric substrates of cotton, polyester and polypropylene are selected in this research, the ablation process of laser marking fabric surface and the selection principles of process parameters were investigated based on both simulation modeling and experimental analysis. First, the phase change heat transfer models between the laser and different fabric substrates were established. Subsequently, changes in temperature field and material removal during marking were numerically simulated. Finally, the effects of marking process parameters on the marking results were analyzed by thermal diffusion theory in simulation experiments and actual experiments.
Results The simulation results show that the required laser energy density of the three fabric substrates had a linear relationship with the average heating rate and marking depth, and the required moving speed was positively related to the average heating rate. Moreover, the average heating rate of fabric substrates decreased with the increase in material thermal conductivity. The marking width and depth were negatively related to the laser moving speed, and negatively related to the laser energy density during transient changes. After the simulation, actual experiments were conducted for three fabric substrates. The actual experimental results of the three fabric substrates verified that the marking width was positively related to the energy density, and negatively related to the movement speed, which was in agreement with the simulation results. The calculation results of the average width error, and the main sources of its generation were related to the fabric substrate color and the surface roughness. Consequently, because of the different colors of the fabric, there were differences in its light transmission ability. Although the simulation experiments had taken into account the transmission loss, the simulated results were still different from that of the actual experiments. In addition, the simulation experiments assumed that three materials of fabric substrate surface was absolutely smooth,which led to the simulation error. Nonetheless, compared to the others, the actual marking effect of polylester fabric substrate was closer to the simulation experiment, due to its smaller surface roughness and that the laser was more easily reflected on the surface, suggesting that the error generated by the marking increases with the surface roughness of the fabric substrate.
Conclusion In fabric marking, the marking depth is proved to be the main factor affecting the clarity of the mark and is the primary indicator that determines the laser parameters, and some principles for the selection of the three fabric laser parameters are given: ① For laser movement speed of 30 mm/s, the energy density of cotton is at least 0.20 J/cm2; polyester is at least 0.20 J/cm2; polypropylene is at least 0.175 J/cm2. ② For laser movement speed of 20 mm/s, the energy density of cotton, polyester and polypropylene is at least 0.125, 0.15 and 0.10 J/cm2, respectively. ③ For laser moving speed of 10 mm/s, the energy density of cotton is at least 0.075 J/cm2; polyester is at least 0.075 J/cm2; polypropylene is at least 0.05 J/cm2. In addition, the surface roughness of the fabric substrate restrains the marking effect, and the subsequent simulation may further give consideration to the roughness. Both the simulation and the actual experiments prove that some relevant laws can provide some reference for the actual fabric marking.

Key words: laser marking, laser parameter, unsteady state, textile material, numerical simulation, marking process

中图分类号: 

  • TS194.5

图1

运动光斑对材料加热示意图"

图2

不同激光参数下材料的平均升温速率"

图3

不同激光参数下材料打标宽度"

图4

不同激光参数下材料打标深度"

表1

织物的结构及物理参数"

材料
名称
组织
结构
体积密度/
(g·cm-3)
面密度/
(g·cm-2)
回潮
率/%
平纹 0.95 101 8.5
涤纶 平纹 0.89 167 0.4
丙纶 平纹 0.76 155 0

表2

织物的热学及光学性质"

材料
名称
比热/
(J·g-1·K-1)
导热系数/
(W·m-1·K-1)
折射率 透射率
1.34 1.125 9 1.577 0.940
涤纶 1.34 0.974 5 1.725 0.931
丙纶 1.80 0.221 0 1.501 0.950

图5

相同移动速度不同能量密度下织物的打标试样图"

表3

同一移动速度不同能量密度下材料的打标宽度"

材料名称 能量密度/
(J·cm-2)
打标宽度/mm 平均宽度
误差/%
模拟 实验
0.05 0.293 0.275 4.2
0.15 0.302 0.295
0.25 0.321 0.310
涤纶 0.05 0.285 0.270 2.1
0.15 0.317 0.320
0.25 0.335 0.330
丙纶 0.05 0.292 0.260 5.7
0.15 0.334 0.320
0.25 0.351 0.350

图6

相同能量密度不同移动速度下织物的打标试样图"

表4

相同能量密度不同移动速度下材料的打标宽度"

材料名称 移动速度/
(mm·s-1)
打标宽度/mm 平均宽度
误差/%
模拟 实验
10 0.313 0.300 5.5
20 0.306 0.290
30 0.293 0.275
涤纶 10 0.310 0.300 5.0
20 0.308 0.290
30 0.285 0.270
丙纶 10 0.325 0.325 6.8
20 0.316 0.310
30 0.308 0.260
[1] 陈平, 王云飞, 戴子杰, 等. 基于飞秒激光成丝的大幅面激光打标方法[J]. 中国激光, 2019, 46(5):242-247.
CHEN Ping, WANG Yunfei, DAI Zijie, et al. Large-format laser marking method based on femtosecond laser filament formation[J]. Chinese Laser, 2019, 46(5):242-247.
[2] FUCHS A N, SCHOEBERL M, TREMMER J, et al. Laser cutting of carbon fiber fabrics[J]. Physics Procedia, 2013, 41: 372-380.
doi: 10.1016/j.phpro.2013.03.090
[3] CHANDAVARKAR A. Industrial single pass and pigment printing of textiles takes center stage at ITMA 2015-digital textile pavilion[J]. Colourage, 2015, 62(11):73-74.
[4] NAYAK R, PADHYE R. The use of laser in garment manufacturing: an overview[J]. Fashion and Textiles, 2016, 3(1): 1-16.
doi: 10.1186/s40691-015-0053-6
[5] ANGELOVA Y, MEŽINSKA S, LAZOV L. Innovative laser technology in textile industry: marking and engraving[C]// 11th Proceedings of the International Scientific and Practical Conference. Rezekne: Rezekne Academy of Technologies Ltd, 2017: 15-21.
[6] ANGELOVA Y P. Factors influencing the laser treatment of textile materials: an overview[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 1-16.
[7] VINCENT C, HOLMBERG, et al. Optical properties of silicon and germanium nanowire fabric[J]. The Journal of Physical Chemistry C, 2012, 116(42):22486-22491.
doi: 10.1021/jp308231w
[8] SEZGIN B S, OGULATA R T. Effect of silica based sols on the optical properties and colour fastness of synthetic indigo dyed denim fabrics[J]. Coloration Technology, 2021, 137(3): 209-216.
doi: 10.1111/cote.v137.3
[9] 杨海贞, 房宽峻, 刘秀明, 等. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(5): 84-90.
YANG Haizhen, FANG Kuanjun, LIU Xiuming, et al. Effect of inkjet printing pretreatment on fabric struc-ture[J]. Journal of Textile Research, 2019, 40(5): 84-90.
[10] STEPANKOVA M, WIENER R, DEMBICKY R. Impact of laser thermal stress on cotton fabric[J]. Fibres & Textiles in Eastern Europe, 2010, 80(3):70-73.
[11] ESTERVES F, ALONSO H. Effect of CO2 laser radiation on surface properties of synethics fibres[J]. Research Journal of Textile and Apparel, 2007, 11(3): 42.
doi: 10.1108/RJTA-11-03-2007-B006
[12] 吴佳佳, 唐虹. 应用 ABAQUS 的织物热传递有限元分析[J]. 纺织学报, 2016, 37(9): 37-41.
WU Jiajia, TANG Hong. Finite element analysis of heat transfer in fabrics using ABAQUS[J]. Journal of Textile Research, 2016, 37(9): 37-41.
[13] JUNG U, LAMAR T. The effects of CO2 laser treatment on a digital velvet printing[J]. Journal of The Textile Institute, 2022, 113(7): 1291-1301.
doi: 10.1080/00405000.2021.1926119
[14] HUNG O, CHAN C, KAN C, et al. Microscopic study of the surface morphology of CO2 laser-treated cotton and cotton/polyester blended fabric[J]. Textile Research Journal, 2017, 87(9): 1107-1120.
doi: 10.1177/0040517516648511
[15] PROVOT X. Deformation constraints in a mass-spring model to describe rigid cloth behaviour[C]// Graphics Interface. Canadian: Canadian Information Processing Society Ltd, 1995: 147-147.
[16] PROVOT X. Collision and self-collision handling in cloth model dedicated to design garments[M]//Vienna: Computer Animation and Simulation'97. [S.l.]: Springer, 1997: 177-189.
[17] 陈竹, 黎向锋, 左敦稳, 等. 激光工艺参数对7050铝合金Al/Ti熔覆温度场影响规律的模拟[J]. 材料科学与工程学报, 2015, 33(1):86-92.
CHEN Zhu, LI Xiangfeng, ZUO Dunwen, et al. Simulation of the influence of laser process parameters on temperature field of 7050 aluminum alloy Al/Ti cladding[J]. Chinese Journal of Materials Science and Engineering, 2015, 33(1):86-92.
[18] 樊玉伟, 周恒, 钟辉煌, 等. 碳纤维天鹅绒阴极与化纤天鹅绒阴极的比较[J]. 强激光与粒子束, 2010(3):587-590.
FAN Yuwei, ZHOU Heng, ZHONG Huihuang, et al. Comparison of carbon fiber velvet cathode and chemical fiber velvet cathode[J]. High Power Laser and Particle Beam, 2010(3):587-590.
[19] 钟勉, 杨涛, 谢威夷, 等. 碳纤维复合材料激光表面去除仿真研究[J]. 兵器材料科学与工程, 2021, 44(4):40-44.
ZHONG Mian, YANG Tao, XIE Weiyi, et al. Simulation research on laser surface removal of carbon fiber composite materials[J]. Ordnance Material Science and Engineering, 2021, 44(4):40-44.
[20] DINEV S, PAULUS G G, NICKLICH W, et al. Dispersion-free amplification of femtosecond dye-laser pulses[J]. Optics Letters, 1992, 17(18): 1298-1300.
pmid: 19798163
[21] 赵士强, 李凌. 飞秒脉冲激光烧蚀金膜的相变传热研究[J]. 光学学报, 2015, 35(12): 182-187.
ZHAO Shiqiang, LI Ling. Study on phase change heat transfer of femtosecond pulsed laser ablation of gold film[J]. Acta Optica Sinica, 2015, 35(12): 182-187.
[22] 徐之光, 王宏杰, 吕福云, 等. 激光相对移动速度对物质熔化和汽化过程的影响[J]. 南开大学学报(自然科学版), 2003, 36(2): 59-62.
XU Zhiguang, WANG Hongjie, LÜ Fuyun, et al. The influence of relative laser moving speed on the melting and vaporization of matter[J]. Journal of Nankai University(Natural Science Edition), 2003, 36(2): 59-62.
[23] SUL I H, HONG K H, SHIM H, et al. Surface roughness measurement of nonwovens using three-dimensional profile data[J]. Textile Research Journal, 2006, 76(11): 828-834.
doi: 10.1177/0040517506064256
[24] 刘欢欢, 王朝晖, 杨可, 等. 基于织物截面轮廓提取的表面粗糙度评估方法[J]. 棉纺织技术, 2021, 49(11):29-33.
LIU Huanhuan, WANG Chaohui, YANG Ke, et al. Surface roughness evaluation method based on fabric cross-sectional profile extraction[J]. Cotton Textile Technology, 2021, 49(11):29-33.
[1] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[2] 秦益民. 含锌和含铜医用敷料的研究进展[J]. 纺织学报, 2023, 44(05): 213-219.
[3] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[4] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[5] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[6] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[7] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[8] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[9] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[10] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[11] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[12] 杨群, 梁琦, 王黎明, 代正伟. 聚N-异丙基丙烯酰胺/聚氨酯梯度复合膜的温敏亲-疏水性及透湿性[J]. 纺织学报, 2021, 42(09): 17-23.
[13] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[14] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[15] 王霁龙, 刘岩, 景媛媛, 许庆丽, 钱祥宇, 张义红, 张坤. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!