纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 137-143.doi: 10.13475/j.fzxb.20220304201
徐瑞东1, 刘红1, 王航1, 朱士凤1,2, 曲丽君1,2, 田明伟1,2()
XU Ruidong1, LIU Hong1, WANG Hang1, ZHU Shifeng1,2, QU Lijun1,2, TIAN Mingwei1,2()
摘要:
针对离子型水凝胶界面舒适性差和耐久性低的问题,提出吸湿透气织物为基体的复合型水凝胶应变传感器的研究策略,构建丙烯酰胺水溶液溶剂体系下共溶解N-N亚甲基双丙烯酰胺、过硫酸铵以及氯化锂的水凝胶体系,采用热聚合工艺合成聚丙烯酰胺/氯化锂(PAAM/LiCl)离子型导电水凝胶,制备三明治结构的离子型水凝胶针织复合织物,研究不同拉伸比例对复合织物电流变化率的影响规律。结果表明:离子型水凝胶复合织物的应变灵敏度系数最高可达0.94,表现出优异的灵敏度;在50%的应变条件下,稳定拉伸5 000次后仍具有良好的稳定性;在室温下放置7 d,复合织物的质量变化率仅为3.5%,表现出优异的耐久性。离子型水凝胶复合织物对语言以及人体运动状态有优异的识别能力,在可穿戴应变传感领域具有广阔的应用前景。
中图分类号:
[1] | 田明伟, 李增庆, 卢韵静, 等. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(5): 170-176. |
TIAN Mingwei, LI Zengqing, LU Yunjing, et al. Recent progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5): 170-176. | |
[2] |
ZHANG Mingchao, WANG Chunya, WANG Huimin, et al. Carbonized cotton fabric for high-performance wearable strain sensors[J]. Advanced Functional Materials, 2017. DOI: 10.1002/adfm.201604795.
doi: 10.1002/adfm.201604795 |
[3] | CHEN Jianwen, WANG Fei, ZHU Guoxuan, et al. Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51567-51577. |
[4] |
NING Chuan, CHENG Renwei, JIANG Yang, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16(2): 2811-2821.
doi: 10.1021/acsnano.1c09792 |
[5] | WANG Shan, CHENG Hanlin, YAO Bing, et al. Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20735-20745. |
[6] |
LIU Wen, CHEN Qian, HUANG Yihe, et al. In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability[J]. Carbon, 2022, 190: 245-254.
doi: 10.1016/j.carbon.2022.01.020 |
[7] | 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(6): 114-119. |
WANG Xiaofei, WAN Ailan, SHEN Xinyan. Preparation and strain sensing of dopamine-modified polypyrrole conductive fabric[J]. Journal of Textile Research, 2021, 42(6): 114-119. | |
[8] |
TANG Ning, ZHOU Cheng, QU Danyao, et al. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion[J]. Small, 2020. DOI: 10.1002/smll.202001363.
doi: 10.1002/smll.202001363 |
[9] |
SUN Fengqiang, TIAN Mingwei, SUN Xuantong, et al. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer[J]. Nano Letters, 2019, 19(9): 6592-6599.
doi: 10.1021/acs.nanolett.9b02862 pmid: 31434486 |
[10] |
HU Xili, TIAN Mingwei, XU Tailin, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear[J]. ACS Nano, 2020, 14(1): 559-567.
doi: 10.1021/acsnano.9b06899 pmid: 31855404 |
[11] | 杨宁, 王进, 田明伟, 等. 石墨烯改性弹性织物的应变传感性能研究[J]. 棉纺织技术, 2021, 49(8): 14-17. |
YANG Ning, WANG Jin, TIAN Mingwei, et al. Study on strain sensing property of graphene-modified elastic fabric[J]. Cotton Textile Technology, 2021, 49(8): 14-17. | |
[12] |
ZENG Zhen, HAO Baowei, LI Daiqi, et al. Large-scale production of weavable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI: 10.1016/j.compositesa.2021.106520.
doi: 10.1016/j.compositesa.2021.106520 |
[13] | ZHOU Jian, YU Hu, XU Xuezhu, et al. Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4835-4842. |
[14] |
TANG Wenzhi, YAN Tingting, WANG Fei, et al. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth[J]. Carbon, 2019, 147: 295-302.
doi: 10.1016/j.carbon.2019.03.002 |
[15] | 王双, 刘玮, 刘晓霞, 等. 嵌入机织物的碳纳米管纱线应变传感性能[J]. 纺织学报, 2018, 39(5): 43-48. |
WANG Shuang, LIU Wei, LIU Xiaoxia, et al. Strain sensing of carbon nanotube yarn embedded into woven fabric[J]. Journal of Textile Research, 2018, 39(5): 43-48.
doi: 10.1177/004051756903900108 |
|
[16] |
ZHAO Shuqiang, ZHENG Peixiao, CONG Honglian, et al. Facile fabrication of flexible strain sensors with AgNPs-decorated CNTs based on nylon/PU fabrics through polydopamine templates[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.149931.
doi: 10.1016/j.apsusc.2021.149931 |
[17] | ZOU Qiushun, HE Kai, OUYANG Jian, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14479-14488. |
[18] |
KIM Chong Chan, LEE Hyun Hee, OH Kyu Hwan, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687.
doi: 10.1126/science.aaf8810 pmid: 27516597 |
[19] |
SUN Jeong Yun, CHRISTOPH Keplinger, GEORGE M Whitesides, et al. Ionic skin[J]. Advanced Materials, 2014, 26(45): 7608-7614.
doi: 10.1002/adma.v26.45 |
[20] |
SUN Jeong Yun, ZHAO Xuanhe, ILLEPERUMA Widusha R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136.
doi: 10.1038/nature11409 |
[21] | 李平, 曾良鹏, 郭宏磊, 等. 两性离子水凝胶的研究进展[J]. 高分子学报, 2020, 51(12):1307-1320. |
LI Ping, ZENG Liangpeng, GUO Honglei, et al. Research progress in zwitterionic hydrogels[J]. Acta Polymerica Sinica, 2020, 51(12):1307-1320. | |
[22] | 仝瑞平, 陈广学, 田君飞, 等. 纤维素基离子水凝胶用于应变传感器[J]. 数字印刷, 2019(3): 184-189. |
TONG Ruiping, CHEN Guangxue, TIAN Junfei, et al. Cellulose-based ionic hydrogels used for strain sensors[J]. Digital Printing, 2019(3): 184-189. | |
[23] |
LIU Xinyue, LIU Ji, LIU Shaoting, et al. Hydrogel machines[J]. Materials Today, 2020, 36: 102-124.
doi: 10.1016/j.mattod.2019.12.026 |
[1] | 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124. |
[2] | 尹昂, 丛洪莲. 经编单向导湿织物设计与结构优化[J]. 纺织学报, 2023, 44(04): 86-91. |
[3] | 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118. |
[4] | 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73. |
[5] | 钱娟, 谢婷, 张佩华, 付少举. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(07): 60-66. |
[6] | 汝欣, 朱婉珍, 史伟民, 彭来湖. 密度非均匀分布纬编针织物的变形预测及仿真[J]. 纺织学报, 2022, 43(06): 63-69. |
[7] | 杨柳, 李羽佳, 张鑫, 何文婧, 童胜昊, 马磊, 张毅, 张瑞云. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(05): 104-108. |
[8] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[9] | 陈可, 张娣, 吉宜军, 乐荣庆, 苏旭中. 精梳涤纶条含量对涤纶针织物性能的影响[J]. 纺织学报, 2021, 42(09): 66-69. |
[10] | 袁鲁宁, 王建萍, 张冰洁, 张宇婷, 姚晓凤. 动态调湿控温立体针织物拓扑优化设计[J]. 纺织学报, 2021, 42(09): 70-75. |
[11] | 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68. |
[12] | 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127. |
[13] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
[14] | 胡旭东, 宋炎锋, 汝欣, 彭来湖. 大小头筒状纬编针织物建模及其线圈长度逆向设计[J]. 纺织学报, 2021, 42(04): 80-84. |
[15] | 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109. |
|