纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 175-182.doi: 10.13475/j.fzxb.20220505801

• 染整与化学品 • 上一篇    下一篇

壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除

狄友波1(), 陈燮阳1, 阎智锋2, 殷轩1, 邱纯利3, 马伟良4, 张向兵5   

  1. 1.太原理工大学 轻纺工程学院, 山西 太原 030024
    2.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室, 山西 太原 030024
    3.山东富辉纺织科技有限公司, 山东 潍坊 261500
    4.山东银鹰股份有限公司, 山东 潍坊 261500
    5.山西绿洲纺织有限责任公司, 山西 晋城 048104
  • 收稿日期:2022-05-16 修回日期:2023-03-20 出版日期:2023-06-15 发布日期:2023-07-20
  • 作者简介:狄友波(1968—),男,副教授。主要研究方向为产业用纺织品。E-mail:diyoubo@tyut.edu.cn
  • 基金资助:
    山西省自然科学基金项目(20210302124084);省部共建纺织新材料与先进加工技术国家重点实验室开放课题(FZ2021015)

Iron ion removal from seed hemp pulp based on synergistic effect of chitosan and polyvinyl alcohol

DI Youbo1(), CHEN Xieyang1, YAN Zhifeng2, YIN Xuan1, QIU Chunli3, MA Weiliang4, ZHANG Xiangbing5   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    2. State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    3. Shandong Fuhui Textile Technology Co., Ltd., Weifang, Shandong 261500, China
    4. Shandong Yinying Co., Ltd., Weifang, Shandong 261500, China
    5. Shanxi Lvzhou Textile Co., Ltd., Jincheng, Shanxi 048104, China
  • Received:2022-05-16 Revised:2023-03-20 Published:2023-06-15 Online:2023-07-20

摘要:

针对籽用大麻湿法纺丝浆粕中铁离子含量过高的问题,利用壳聚糖的金属螯合性和聚乙烯醇的乳化稳定作用制备壳聚糖-聚乙烯醇吸附液,对籽用大麻浆粕进行处理,探究吸附液对铁离子的脱除效果及其最佳处理条件,并通过密度泛函理论对螯合机制进行分析。研究表明:当壳聚糖与聚乙烯醇质量比为 1∶2、 吸附液质量分数为3.6%、吸附液pH值为6.5、处理温度为45 ℃、处理时间为30 min时,吸附液对铁离子的脱除效果最优,可将铁离子从52 mg/kg 脱除至35 mg/kg,并具有较好的可纺性;壳聚糖相比柠檬酸和乙二胺四乙酸钠对铁离子具有更强的螯合能力,且其对二价铁离子的结合能力强于三价铁离子;壳聚糖的强螯合性是由于壳聚糖配位原子相互距离较远且配位原子容易旋转并能与金属离子形成规则八面体。

关键词: 籽用大麻浆粕, 铁离子, 壳聚糖, 聚乙烯醇, 密度泛函理论

Abstract:

Objective The strong adsorption ability of seed hemp on metal ions makes it impossible for seed hemp pulp to spin due to the high iron content, which leads to serious waste of resources restricting the effective utilization of bioresources and the achievement of China's carbon peak and neutrality goals. To address this problem, the adsorption solution (AS) including chitosan (CS) and polyvinyl alcohol (PVA) was designed to adsorb iron ions and therefore reduce iron content followed by study on the removal mechanism, which aim to provide basis theoretical support for the innovation and industrialization of iron ion removal technology of seed hemp.
Method Based on the metal chelation of CS and the emulsification and stabilization effects of PVA, AS was firstly prepared and used to deal with seed hemp pulp in this study, in which the removal effect, optimal removal conditions were explored by evaluating the spinnability of seed hemp pulp and the physical properties of the resulting fiber. In addition, the chelation mechanism of CS on iron ions was analyzed by density functional theory (DFT) employing the DMol3 module in Materials Studio software.
Results AS exhibited effective adsorption on iron ions where CS played a major role and PVA an assisted role. The adsorption effect of AS on iron ions was excellent under the condition of pH = 6.5 but the effect decreased obviously when pH value increased to 8 (Fig. 2), indicating the powerful influence of pH value on adsorption effect. It is observed that temperature has little effect on the adsorption effect of iron ions in the range between 30 and 50 ℃ (Fig. 3). Furthermore, adsorption time showed little effect on the adsorption effect of iron ions and the adsorption equilibrium was achieved with adsorption time of 30 min (Fig. 4).After the treatment with AS on the seed hemp pulp, the required aging rate during the glue making process was decreased and the properties containing polymerization degree, maturity, nickel mesh value and viscosity of the obtained spinning solution were enhanced (Tab. 4). In addition, the spinnability of the spinning solution was significantly improved showing the similar spinnability performance to that of the spinning solution prepared from wood pulp (Tab. 5). Through wet spinning, both the dry and wet breaking strengths of the obtained fibers were enhanced while the number of fiber defects were also significantly reduced (Tab. 6).DFT Calculation results show that all the binding configurations between citric acid (CA), ethylene diamine tetra acetic acid (EDTA), CS and FeCl2, FeCl3 were exothermic and form stable chelate. It is worth noting that CS represents stronger chelating ability to iron ions than CA and EDTA, especially the chelating ability to Fe2+ was stronger than that to Fe3+ (Fig. 5). The reason for the strong chelating ability for CS was contributed to the long distance between coordination atoms and the ease to rotate for coordination atoms leading to the formation of regular octahedron by the coordination of chitosan with metal ions (Fig. 6).
Conclusion Both the spinnability of the seed hemp pulp and the physical properties of the seed hemp viscose fiber are improved after AS treatment. The results show that AS with the mass ratio 1∶2 of CS and PVA, the mass fraction 3.6% adsorbent and pH =6.5 will provide the best removal effect for iron ions at 45 ℃ for 30 min, which can decrease the concentration of iron ions from 52 mg/kg to 35 mg/kg and the obtained seed hemp pulp has favorable spinnability. The adsorption and removal of iron ions in seed hemp pulp is achieved by the chelation of CS with iron ions to form complex in which PVA plays an auxiliary role in emulsification and stability, enhancing the chelation effect of CS and preventing the secondary deposition of iron ions.

Key words: seed hemp pulp, iron ion, chitosan, polyvinyl alcohol, density functional theory

中图分类号: 

  • TQ341

表1

不同处理条件对铁离子脱除效果的正交试验参数设计"

水平 吸附液质量
分数/%
pH值 时间/min 温度/℃
1 2.4 3.5 30 40
2 3.6 5.0 60 50
3 4.8 6.5 90 60

表2

不同质量比CS/PVA吸附液处理后浆粕铁离子含量"

CS与PVA
质量比
CS质量分
数/%
PVA质量
分数/%
铁离子含
量/(mg·kg-1)
4∶1 1.6 0.4 41
2∶1 1.6 0.8 40
1∶1 0.8 0.8 45
1∶2 0.8 1.6 40
1∶4 0.8 3.2 39

图1

CS质量分数对吸附液黏度的影响"

表3

处理条件对铁离子脱除效果的正交试验结果"

试验号 吸附液质量
分数/%
pH值 时间/
min
温度/
铁离子含
量/(mg·kg-1)
1 2.4 3.5 30 40 45
2 2.4 5.0 60 50 42
3 2.4 6.5 90 60 39
4 3.6 3.5 60 60 40
5 3.6 5.0 90 40 37
6 3.6 6.5 30 50 35
7 4.8 3.5 90 50 38
8 4.8 5.0 30 60 34
9 4.8 6.5 60 40 33
K1 126 123 114 116
K2 112 113 115 115
K3 105 107 114 113
极差R 21 16 1 3

图2

pH值对铁离子吸附量的影响"

图3

温度对铁离子吸附量的影响"

图4

时间对铁离子吸附量的影响"

表4

脱铁前后纺丝液各项指标"

脱铁前后 甲纤含
量/%
含碱量/
%
黏度/
s
熟成度/
mL
镍网值/
mL
脱铁前 9.05 4.72 42.0 8.2 95
脱铁后 9.15 4.71 50.6 10.9 165

表5

脱铁前后可纺性"

脱铁
前后
纺盘牵
伸率/
%
塑化牵
伸率/
%
纺丝
速度/
(m·min-1)
烛形滤
器压力/
MPa
凝固浴
透明度
可纺性
脱铁前 19 5 25 0.12 微浑 丝束有胶块
脱铁后 35 10 40 0.04 透明 丝束平滑

表6

脱铁前后纤维物理指标"

脱铁
前后
干断裂
强度/
(cN·dtex-1)
干断裂
伸长
率/%
湿断裂
强度/
(cN·dtex-1)
残硫量/
(mg·
(100 g)-1)
疵点/
(mg·
(100 g)-1)

度/
%
脱铁前 1.49 20.0 0.71 5.2 20.0 72
脱铁后 2.48 19.3 1.28 3.8 0.5 81

图5

CA、EDTA、CS与FeCl2、FeCl3的稳定螯合构型及其结合能"

图6

FeCl2、FeCl3、CA、EDTA和CS的HOMO和LUMO"

[1] 宋淑敏, 刘宇峰, 董艳, 等. 汉麻籽的营养价值及开发利用[J]. 农产品加工, 2016(17): 54-55.
SONG Shumin, LIU Yufeng, DONG Yan, et al. Nutritional value and development and utilization of Hemp seeds[J]. Agricultural Products Processing, 2016(17): 54-55.
[2] 何锦风, 陈天鹏, 卢蓉蓉, 等. 汉麻籽的综合利用及产业化研究[J]. 中国食品学报, 2010, 10(3): 98-112.
HE Jinfeng, CHEN Tianpeng, LU Rongrong, et al. Research on comprehensive utilization and industrialization of hemp seed[J]. Chinese Journal of Food Science, 2010, 10(3): 98-112.
[3] 石杰, 宋淑敏, 魏连会, 等. 汉麻籽蛋白的分级提取及产物功能特性的研究[J]. 粮食与油脂, 2021, 34(11): 132-136.
SHI Jie, SONG Shumin, WEI Lianhui, et al. Study on the fractional extraction of hemp seed protein and the functional properties of the product[J]. Grains and Oils, 2021, 34(11): 132-136.
[4] 张华, 张建春, 张杰. 汉麻:一种高值特种生物质资源及应用[J]. 高分子通报, 2011(8): 1-7.
ZHANG Hua, ZHANG Jianchun, ZHANG Jie. Hemp: a high-value special biomass resource and its applica-tion[J]. Polymer Bulletin, 2011(8): 1-7.
[5] 刘雪强, 刘阳, 粟建光, 等. 中国汉麻综合利用技术与产业化进展[J]. 中国麻业科学, 2019, 41(6): 283-288.
LIU Xueqiang, LIU Yang, SU Jianguang, et al. Progress in comprehensive utilization technology and industrialization of hemp in China[J]. China Hemp Science, 2019, 41(6): 283-288.
[6] 杨自平, 张华, 张晓霞, 等. 汉麻产业与低碳经济[J]. 新财经(理论版), 2012 (2): 12-13.
YANG Ziping, ZHANG Hua, ZHANG Xiaoxia, et al. Hemp industry and low-carbon economy[J]. New Finance (Theoretical Edition), 2012 (2): 12-13.
[7] 周永凯, 张杰, 张建春. 大麻杆芯粘胶纤维的结构与性能[J]. 纺织学报, 2008, 29(4): 22-26.
ZHOU Yongkai, ZHANG Jie, ZHANG Jianchun. Structure and properties of hemp xyloid stem based viscose fiber[J]. Journal of Textile Research, 2008, 29(4): 22-26.
[8] 孟超然, 毕雪蓉, 李佳蔚, 等. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018, 39(2): 78-85.
MENG Chaoran, BI Xuerong, LI Jiawei, et al. Control of physical and chemical properties of oxidation degummed ramie fiber with 1,8-dihydroxyanthraquinone[J]. Journal of Textile Research, 2018, 39(2): 78-85.
doi: 10.1177/004051756903900112
[9] 刘芳, 马颜雪, 陈小光, 等. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94.
LIU Fang, MA Yanxue, CHEN Xiaoguang, et al. Study on process performance of ramie fiber anaerobic biological degumming system[J]. Journal of Textile Research, 2020, 41(11): 89-94.
[10] NEAMA A R, OMAR E A, EHAB F A, et al. Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane[J]. Journal of Environmental Sciences, 2012, 24(8): 1425-1432.
pmid: 23513684
[11] 王孝平, 姜皓然, 田海燕, 等. 壳聚糖与羧甲基壳聚糖对铁离子的络合性能研究[J]. 化学与生物工程, 2009, 26(3): 30-33.
WANG Xiaoping, JIANG Haoran, TIAN Haiyan, et al. Study on the complexation properties of chitosan and carboxymethyl chitosan for iron ions[J]. Chemical and Biological Engineering, 2009, 26(3): 30-33.
[12] 郭娜, 胡敏, 颜子博, 等. 聚乙烯醇/壳聚糖复合泡沫吸附剂的制备及对镍离子的吸附性能试验研究[J]. 湿法冶金, 2021, 40(2): 110-115.
GUO Na, HU Min, YAN Zibo, et al. Preparation of polyvinyl alcohol/chitosan composite foam adsorbent and experimental study on its adsorption performance for nickel ions[J]. Hydrometallurgy of China, 2021, 40(2): 110-115.
[13] 曹丽霞, 李艳香, 杨传芳. 壳聚糖对Cu2+的吸附与解吸[J]. 环境工程, 2014, 32(S1): 48-53.
CAO Lixia, LI Yanxiang, YANG Chuanfang. Adsorption and desorption of Cu2+ by chitosan[J]. Environmental Engineering, 2014, 32(S1): 48-53.
[1] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[2] 王双华, 王冬, 付少海, 仲鸿天, 董朋. 海岛纤维用增塑改性聚乙烯醇的制备及其性能[J]. 纺织学报, 2023, 44(04): 8-15.
[3] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(03): 111-118.
[4] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[5] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[6] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[7] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[8] 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138.
[9] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[10] 张涛, 王富平, 陈国宝, 吴基玉, 庞亚妮, 陈忠敏. 壳聚糖基抑菌凝胶剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 71-77.
[11] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[12] 沈忱思, 王曼, 徐晨烨, 王华平, 李方. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123.
[13] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[14] 周慧玲, 朱俐莎, 吴雄英, 丁雪梅. 电雾化处理对羊毛织物抗起毛起球性能的影响[J]. 纺织学报, 2021, 42(10): 120-125.
[15] 姜生, 吉利梅. 聚乙烯醇增强氯化聚乙烯-受阻酚阻尼复合材料的制备及其性能[J]. 纺织学报, 2021, 42(04): 55-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!