纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 21-27.doi: 10.13475/j.fzxb.20230100402
• 纺织科技新见解学术沙龙专栏: 高品质芳纶生产关键技术及其产品应用 • 上一篇 下一篇
LÜ Junwei1,2, LUO Longbo1,2, LIU Xiangyang1,2()
摘要:
直接氟化技术作为一种高效、低成本以及可规模化应用的表面处理手段,已广泛应用于材料表面及其复合材料界面的结构设计与调控,以改善复合材料界面的应力传递及其制件的宏观力学性质。从直接氟化技术的原理出发,首先介绍了直接氟化的反应机制、应用领域及当前研究进展,并重点关注了直接氟化技术在纤维表面及复合材料界面的结构设计领域中的应用。同时,根据直接氟化在纤维表面引入的不同活性中心的差异,将直接氟化对纤维表面结构设计的发展历程归纳为3个主要研究阶段:直接氟化调控纤维表面的结构及极性、在纤维表面引入C—F键作为活性中心的衍生接枝反应和在纤维表面引入自由基作为活性中心的衍生接枝反应。最后,针对直接氟化技术的优势和工艺特点,展望了直接氟化技术在复合材料结构设计领域的应用潜力、存在的问题和发展趋势。
中图分类号:
[1] |
EUN J H, KIM D H, LEE J S. Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2020.105987.
doi: 10.1016/j.compositesa.2020.105987 |
[2] |
FORINTOS N, CZIGANY T. Reinforcing carbon fibers as sensors: the effect of temperature and humidity[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2020.105819.
doi: 10.1016/j.compositesa.2020.105819 |
[3] |
KATAGIRI K, HONDA S, NAKAYA S, et al. Tensile strength of CFRP with curvilinearly arranged carbon fiber along the principal stress direction fabricated by the electrodeposition resin molding[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106271.
doi: 10.1016/j.compositesa.2021.106271 |
[4] |
LAMORINIERE S, JONES M P, HO K, et al. Carbon nanotube enhanced carbon fiber-poly(ether ether ketone) interfaces in model hierarchical composites[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2022.109327.
doi: 10.1016/j.compscitech.2022.109327 |
[5] |
BAZAN P, NOSAL P, WIERZBICKA-MIERNIK A, et al. A novel hybrid composites based on biopolyamide 10.10 with basalt/aramid fibers: mechanical and thermal investigation[J]. Composites Part B: Engineering, 2021. DOI:10.1016/j.compositesb.2021.109125.
doi: 10.1016/j.compositesb.2021.109125 |
[6] |
LERTWASSANA W, PARNKLANG T, MORA P, et al. High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials[J]. Composites Part B:Engineering, 2019. DOI:10.1016/j.compositesb.2019.107280.
doi: 10.1016/j.compositesb.2019.107280 |
[7] |
CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2020.106146.
doi: 10.1016/j.compositesa.2020.106146 |
[8] |
FU Y, LI H, CAO W. Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2019.105719.
doi: 10.1016/j.compositesa.2019.105719 |
[9] |
JIA C, ZHANG R, YUAN C, et al. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite[J]. Polymer Composites, 2020, 41(5): 2046-2053.
doi: 10.1002/pc.v41.5 |
[10] |
KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B:Engineering, 2020. DOI:10.1016/j.compositesb.2020.108011.
doi: 10.1016/j.compositesb.2020.108011 |
[11] |
PU Y, MA Z, LIU L, et al. Improvement on strength and toughness for CFRPs by construction of novel "soft-rigid" interface layer[J]. Composites Part B:Engineering, 2022. DOI:10.1016/j.compositesb.2022.109846.
doi: 10.1016/j.compositesb.2022.109846 |
[12] |
RANDALL J D, STOJCECSKI F, DJORDJEVIC N, et al. Carbon fiber polypropylene interphase modification as a route to improved toughness[J]. Composites Part A:Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107001.
doi: 10.1016/j.compositesa.2022.107001 |
[13] |
ZENG L, LIU X, CHEN X, et al. π-π interaction between carbon fiber and epoxy resin for interface improvement in composites[J]. Composites Part B: Engineering, 2021. DOI:10.1016/j.compositesb.2021.108983.
doi: 10.1016/j.compositesb.2021.108983 |
[14] |
ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites Part B:Engineering, 2022. DOI:10.1016/j.compositesb.2022.109639.
doi: 10.1016/j.compositesb.2022.109639 |
[15] |
BIGELOW L A. The action of elementary fluorine upon organic compounds[J]. Chemical Reviews, 1947, 40(1): 51-115.
pmid: 20287884 |
[16] | 杜勇, 姚京松, 吴向东, 等. 表面氟化的环氧/玻璃纤维复合绝缘的表面性能与耐放电性能[J]. 高电压技术, 2018, 44(12): 3791-3797. |
DU Yong, YAO Jingsong, WU Xiangdong, et al. Surface properties and discharge resistance of surface fluorinated epoxy/fiberglass composite insulators[J]. High Voltage Engineering, 2018, 44(12): 3791-3797. | |
[17] | 相中华, 牛勃, 马飞越, 等. GIS绝缘子的直接氟化与直流闪络性能[J]. 高电压技术, 2022, 48(11): 4306-4315. |
XIANG Zhonghua, NIU Bo, MA Feiyue, et al. Direct fluorination and DC flashover performance of GIS spacers[J]. High Voltage Engineering, 2022, 48(11): 4306-4315. | |
[18] |
LEROUX J D, PAUL D R, KAMPA J, et al. Modification of asymmetric polysulfone membranes by mild surface fluorination. part 1: transport proper-ties[J]. Journal of Membrane Science, 1994, 94: 121-141.
doi: 10.1016/0376-7388(93)E0153-B |
[19] | FAN K, CHEN X, WANG X, et al. Toward excellent tribological performance as oil-based lubricant additive: particular tribological behavior of fluorinated graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28828-28838. |
[20] |
GAO J, XU X, FAN C, et al. Surface modification of fluoroelastomer by direct fluorination with fluorine gas[J]. Materials Letters, 2014, 121: 219-222.
doi: 10.1016/j.matlet.2014.01.149 |
[21] |
CHENG Z, WU P, GAO J, et al. Structural evolution of fluorinated aramid fibers with fluorination degree and dominant factor for its adhesion property[J]. Journal of Fluorine Chemistry, 2016, 188: 139-146.
doi: 10.1016/j.jfluchem.2016.06.018 |
[22] |
LUO L, HONG D, ZHANG L, et al. Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism[J]. Composites Science and Technology, 2018, 165: 106-114.
doi: 10.1016/j.compscitech.2018.06.014 |
[23] |
LUO L, WU P, CHENG Z, et al. Direct fluorination of para-aramid fibers 1: fluorination reaction process of PPTA fiber[J]. Journal of Fluorine Chemistry, 2016, 186: 12-18.
doi: 10.1016/j.jfluchem.2016.04.002 |
[24] |
CHENG Z, JIANG C, DAI Y, et al. Fe3+ coordination induced selective fluorination of aramid fiber to suppress surface chain scission behavior and improve surface polarity[J]. Applied Surface Science, 2018, 456: 221-229.
doi: 10.1016/j.apsusc.2018.06.110 |
[25] | CHENG Z, LI B, HUANG J, et al. Covalent modification of aramid fibers' surface via direct fluorination to enhance composite interfacial properties[J]. Materials & Design, 2016, 106: 216-225. |
[26] |
HE T, XING Z, WANG Y, et al. Direct fluorination as a one-step ATRP initiator immobilization for convenient surface grafting of phenyl ring-containing substrates[J]. Polymer Chemistry, 2020, 11(35): 5693-5700.
doi: 10.1039/D0PY00860E |
[27] |
LAI W, WANG X, FU J, et al. Radical chain reaction mechanism of graphene fluorination[J]. Carbon, 2018, 137: 451-457.
doi: 10.1016/j.carbon.2018.05.005 |
[28] |
LIU J, LI X, ZHANG L, et al. Direct fluorination of nanographene molecules with fluorine gas[J]. Carbon, 2022, 188: 453-460.
doi: 10.1016/j.carbon.2021.12.043 |
[29] |
FAN K, LIU X, LIU Y, et al. Covalent functionalization of fluorinated graphene through activation of dormant radicals for water-based lubricants[J]. Carbon, 2020, 167:826-834.
doi: 10.1016/j.carbon.2020.06.033 |
[30] |
LAI W, WANG C, CHEN Y, et al. In situ radical polymerization and grafting reaction simultaneously initiated by fluorinated graphene[J]. Langmuir, 2019, 35(20): 6610-6619.
doi: 10.1021/acs.langmuir.9b00131 pmid: 31038966 |
[31] |
LV J, CHENG Z, WU H, et al. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement[J]. Composites Part B:Engineering, 2020. DOI:10.1016/j.compositesb.2019.107608.
doi: 10.1016/j.compositesb.2019.107608 |
[1] | 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9. |
[2] | 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20. |
[3] | 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32. |
[4] | 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176. |
[5] | 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66. |
[6] | 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76. |
[7] | 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88. |
[8] | 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114. |
[9] | 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87. |
[10] | 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80. |
[11] | 马莹, 刘岳岩, 赵洋, 陈翔, 禄盛, 胡瀚杰. 基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析[J]. 纺织学报, 2022, 43(04): 47-54. |
[12] | 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9. |
[13] | 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23. |
[14] | 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63. |
[15] | 刘强飞, 吴韶华, 杨吉震, 周蓉, 董湘琳, 宋传波, 沈照旭. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10): 47-52. |
|