纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 21-27.doi: 10.13475/j.fzxb.20230100402

• 纺织科技新见解学术沙龙专栏: 高品质芳纶生产关键技术及其产品应用 • 上一篇    下一篇

基于直接氟化技术的芳纶表/界面结构设计与制备研究进展

吕钧炜1,2, 罗龙波1,2, 刘向阳1,2()   

  1. 1.四川大学 高分子科学与工程学院, 四川 成都 610065
    2.四川大学 高分子材料工程国家重点实验室,四川 成都 610065
  • 收稿日期:2023-01-03 修回日期:2023-03-20 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 刘向阳
  • 作者简介:吕钧炜(1996—),男,博士生。主要研究方向为高性能高分子材料及其表/界面可控设计。
  • 基金资助:
    国家重点研发计划项目(2022YFB3707900);国家自然科学基金项目(51633004);国家自然科学基金项目(52173008)

Advances in design and fabrication of aramid fiber's surface and interface structure based on direct fluorination

LÜ Junwei1,2, LUO Longbo1,2, LIU Xiangyang1,2()   

  1. 1. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
    2. State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2023-01-03 Revised:2023-03-20 Published:2023-06-15 Online:2023-07-20
  • Contact: LIU Xiangyang

摘要:

直接氟化技术作为一种高效、低成本以及可规模化应用的表面处理手段,已广泛应用于材料表面及其复合材料界面的结构设计与调控,以改善复合材料界面的应力传递及其制件的宏观力学性质。从直接氟化技术的原理出发,首先介绍了直接氟化的反应机制、应用领域及当前研究进展,并重点关注了直接氟化技术在纤维表面及复合材料界面的结构设计领域中的应用。同时,根据直接氟化在纤维表面引入的不同活性中心的差异,将直接氟化对纤维表面结构设计的发展历程归纳为3个主要研究阶段:直接氟化调控纤维表面的结构及极性、在纤维表面引入C—F键作为活性中心的衍生接枝反应和在纤维表面引入自由基作为活性中心的衍生接枝反应。最后,针对直接氟化技术的优势和工艺特点,展望了直接氟化技术在复合材料结构设计领域的应用潜力、存在的问题和发展趋势。

关键词: 芳纶, 表面处理, 界面结构设计, 直接氟化技术, 纤维复合材料

Abstract:

Significance Due to the advantages of low density, high strength, excellent environmental stability and wave-transparent of aramid fiber, it is gradually becoming the most important representative fiber in the high-performance organic fiber family. Among the wide range of applications of aramid fiber, the use as reinforcements in advanced composites might be the most important. However, poor interfacial interaction between aramid fiber and composite matrix has been a key issue to limit further mechanical improvements in composite design. Herein, direct fluorination using elemental fluorine or F2/N2 mixture to direct treat aramid fiber surface is efficient strategy to enhance composite interface. Utilizing the ultra-strong oxidation of F2, direct fluorination could easily dope fluorine content groups with high polarity in a large scale to improve wettability between fiber and matrix, while post-purification is needed due to the characteristic of vapor-solid reaction. Besides, direct fluorination induced C—F bonds also have significant designability in derived grafting reactions for further well-performed composite interface. Therefore, direct fluorination exhibits huge potential in the future composite design and manufacturing.
Progress Advances of direct fluorination in enhancing composite interface could be divided into three stages: ① Direct fluorination induced high-polar fluorine-contained groups and extra oxygen species significantly improves the interfacial wettability between fiber and polymer matrix, where the optimized interfacial wettability would enhance the interfacial combination of the composite; ② C—F bonds not only have high polarity, but also exhibit flexible feasibility in deriving reactions like nucleophilic substitution and atom transfer radical polymerization, thus further grafting reaction could be realized on fluorinated aramid fiber surface to obtain better composite interfacial properties; ③ Direct fluorination with typical radical characteristic induces significant radical species in fluorinated aramid fiber, then the relevant polymerization with high grafting density could be restricted on fluorinated aramid surface and got much better composite interface. Therefore, direct fluorination exhibited flexible ability in designing numerous high-performance interfacial structures of composite product servicing in different environments.
Conclusion and Prospect In previous research work, it has been demonstrated that direct fluorination is a low-cost and industrially applicable fiber surface treatment technique that can significantly improve the surface properties of fibers and their interfacial bonding with the polymer matrix while maintaining the intrinsic excellent mechanical properties of the fibers, thus improving the mechanical properties of the interfacial phase in the composite. In fact, further development and application of direct fluorination technology in the design and construction of interfacial structures for fiber surface modification and its reinforced composites is still needed, which is expected to better solve potential scientific and technical problems in the development of the mechanics of fiber-reinforced composites and provide new methods for the modulation of fiber surface modification and its interfacial properties of composites. Three problems and trends in the research of direct fluorinated aramid surface modification and its composite interface are listed as follows: ① Due to the high chemical reaction activity of fluorine gas, the current principles and methods of its regulation are insufficient, how to more effectively regulate the fluorination reaction rate and the selectivity of fluorination reaction sites, as well as how to more effectively avoid the chain-breaking behavior of macromolecular chains are the focus of further research and development of direct fluorination technology; ② It is necessary to construct continuous gradient changing polar structures and their interfacial properties on the fiber surface through direct fluorination reactions and their derivative grafting reactions, so as to more accurately describe and establish the quantitative constitutive relationship between the physicochemical structure of the fiber surface and the fine mechanics of the composite interface; ③ More efficient methods and corresponding engineering equipment are in high demand for regulating the homogeneity of direct fluorinated fibers.

Key words: aramid fiber, surface treatment, interface structure design, direct fluorination, fiber composite material

中图分类号: 

  • TS195.6

图1

直接氟化处理芳纶纤维和PBO纤维的反应机制"

图2

金属离子催化选择性氟化芳纶纤维的机制示意图"

图3

氟化芳纶表面引发羟乙基甲基丙烯酸酯接枝聚合的原理及其表面形貌 注:Ph和Bpy分别代表苯环和2,2'-联吡啶。"

图4

直接氟化引入自由基引发的芳纶表面自由基聚合反应过程和机制"

[1] EUN J H, KIM D H, LEE J S. Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2020.105987.
doi: 10.1016/j.compositesa.2020.105987
[2] FORINTOS N, CZIGANY T. Reinforcing carbon fibers as sensors: the effect of temperature and humidity[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2020.105819.
doi: 10.1016/j.compositesa.2020.105819
[3] KATAGIRI K, HONDA S, NAKAYA S, et al. Tensile strength of CFRP with curvilinearly arranged carbon fiber along the principal stress direction fabricated by the electrodeposition resin molding[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106271.
doi: 10.1016/j.compositesa.2021.106271
[4] LAMORINIERE S, JONES M P, HO K, et al. Carbon nanotube enhanced carbon fiber-poly(ether ether ketone) interfaces in model hierarchical composites[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2022.109327.
doi: 10.1016/j.compscitech.2022.109327
[5] BAZAN P, NOSAL P, WIERZBICKA-MIERNIK A, et al. A novel hybrid composites based on biopolyamide 10.10 with basalt/aramid fibers: mechanical and thermal investigation[J]. Composites Part B: Engineering, 2021. DOI:10.1016/j.compositesb.2021.109125.
doi: 10.1016/j.compositesb.2021.109125
[6] LERTWASSANA W, PARNKLANG T, MORA P, et al. High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials[J]. Composites Part B:Engineering, 2019. DOI:10.1016/j.compositesb.2019.107280.
doi: 10.1016/j.compositesb.2019.107280
[7] CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2020.106146.
doi: 10.1016/j.compositesa.2020.106146
[8] FU Y, LI H, CAO W. Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2019.105719.
doi: 10.1016/j.compositesa.2019.105719
[9] JIA C, ZHANG R, YUAN C, et al. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite[J]. Polymer Composites, 2020, 41(5): 2046-2053.
doi: 10.1002/pc.v41.5
[10] KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B:Engineering, 2020. DOI:10.1016/j.compositesb.2020.108011.
doi: 10.1016/j.compositesb.2020.108011
[11] PU Y, MA Z, LIU L, et al. Improvement on strength and toughness for CFRPs by construction of novel "soft-rigid" interface layer[J]. Composites Part B:Engineering, 2022. DOI:10.1016/j.compositesb.2022.109846.
doi: 10.1016/j.compositesb.2022.109846
[12] RANDALL J D, STOJCECSKI F, DJORDJEVIC N, et al. Carbon fiber polypropylene interphase modification as a route to improved toughness[J]. Composites Part A:Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107001.
doi: 10.1016/j.compositesa.2022.107001
[13] ZENG L, LIU X, CHEN X, et al. π-π interaction between carbon fiber and epoxy resin for interface improvement in composites[J]. Composites Part B: Engineering, 2021. DOI:10.1016/j.compositesb.2021.108983.
doi: 10.1016/j.compositesb.2021.108983
[14] ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites Part B:Engineering, 2022. DOI:10.1016/j.compositesb.2022.109639.
doi: 10.1016/j.compositesb.2022.109639
[15] BIGELOW L A. The action of elementary fluorine upon organic compounds[J]. Chemical Reviews, 1947, 40(1): 51-115.
pmid: 20287884
[16] 杜勇, 姚京松, 吴向东, 等. 表面氟化的环氧/玻璃纤维复合绝缘的表面性能与耐放电性能[J]. 高电压技术, 2018, 44(12): 3791-3797.
DU Yong, YAO Jingsong, WU Xiangdong, et al. Surface properties and discharge resistance of surface fluorinated epoxy/fiberglass composite insulators[J]. High Voltage Engineering, 2018, 44(12): 3791-3797.
[17] 相中华, 牛勃, 马飞越, 等. GIS绝缘子的直接氟化与直流闪络性能[J]. 高电压技术, 2022, 48(11): 4306-4315.
XIANG Zhonghua, NIU Bo, MA Feiyue, et al. Direct fluorination and DC flashover performance of GIS spacers[J]. High Voltage Engineering, 2022, 48(11): 4306-4315.
[18] LEROUX J D, PAUL D R, KAMPA J, et al. Modification of asymmetric polysulfone membranes by mild surface fluorination. part 1: transport proper-ties[J]. Journal of Membrane Science, 1994, 94: 121-141.
doi: 10.1016/0376-7388(93)E0153-B
[19] FAN K, CHEN X, WANG X, et al. Toward excellent tribological performance as oil-based lubricant additive: particular tribological behavior of fluorinated graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28828-28838.
[20] GAO J, XU X, FAN C, et al. Surface modification of fluoroelastomer by direct fluorination with fluorine gas[J]. Materials Letters, 2014, 121: 219-222.
doi: 10.1016/j.matlet.2014.01.149
[21] CHENG Z, WU P, GAO J, et al. Structural evolution of fluorinated aramid fibers with fluorination degree and dominant factor for its adhesion property[J]. Journal of Fluorine Chemistry, 2016, 188: 139-146.
doi: 10.1016/j.jfluchem.2016.06.018
[22] LUO L, HONG D, ZHANG L, et al. Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism[J]. Composites Science and Technology, 2018, 165: 106-114.
doi: 10.1016/j.compscitech.2018.06.014
[23] LUO L, WU P, CHENG Z, et al. Direct fluorination of para-aramid fibers 1: fluorination reaction process of PPTA fiber[J]. Journal of Fluorine Chemistry, 2016, 186: 12-18.
doi: 10.1016/j.jfluchem.2016.04.002
[24] CHENG Z, JIANG C, DAI Y, et al. Fe3+ coordination induced selective fluorination of aramid fiber to suppress surface chain scission behavior and improve surface polarity[J]. Applied Surface Science, 2018, 456: 221-229.
doi: 10.1016/j.apsusc.2018.06.110
[25] CHENG Z, LI B, HUANG J, et al. Covalent modification of aramid fibers' surface via direct fluorination to enhance composite interfacial properties[J]. Materials & Design, 2016, 106: 216-225.
[26] HE T, XING Z, WANG Y, et al. Direct fluorination as a one-step ATRP initiator immobilization for convenient surface grafting of phenyl ring-containing substrates[J]. Polymer Chemistry, 2020, 11(35): 5693-5700.
doi: 10.1039/D0PY00860E
[27] LAI W, WANG X, FU J, et al. Radical chain reaction mechanism of graphene fluorination[J]. Carbon, 2018, 137: 451-457.
doi: 10.1016/j.carbon.2018.05.005
[28] LIU J, LI X, ZHANG L, et al. Direct fluorination of nanographene molecules with fluorine gas[J]. Carbon, 2022, 188: 453-460.
doi: 10.1016/j.carbon.2021.12.043
[29] FAN K, LIU X, LIU Y, et al. Covalent functionalization of fluorinated graphene through activation of dormant radicals for water-based lubricants[J]. Carbon, 2020, 167:826-834.
doi: 10.1016/j.carbon.2020.06.033
[30] LAI W, WANG C, CHEN Y, et al. In situ radical polymerization and grafting reaction simultaneously initiated by fluorinated graphene[J]. Langmuir, 2019, 35(20): 6610-6619.
doi: 10.1021/acs.langmuir.9b00131 pmid: 31038966
[31] LV J, CHENG Z, WU H, et al. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement[J]. Composites Part B:Engineering, 2020. DOI:10.1016/j.compositesb.2019.107608.
doi: 10.1016/j.compositesb.2019.107608
[1] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[2] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[3] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[4] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[5] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[6] 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76.
[7] 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88.
[8] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[9] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[10] 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80.
[11] 马莹, 刘岳岩, 赵洋, 陈翔, 禄盛, 胡瀚杰. 基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析[J]. 纺织学报, 2022, 43(04): 47-54.
[12] 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9.
[13] 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
[14] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[15] 刘强飞, 吴韶华, 杨吉震, 周蓉, 董湘琳, 宋传波, 沈照旭. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!