纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 50-56.doi: 10.13475/j.fzxb.20220402201
周歆如1, 范梦晶1, 胡铖烨2, 洪剑寒1,2,3, 刘永坤1,3, 韩潇1,3, 赵晓曼1,3()
ZHOU Xinru1, FAN Mengjing1, HU Chengye2, HONG Jianhan1,2,3, LIU Yongkun1,3, HAN Xiao1,3, ZHAO Xiaoman1,3()
摘要:
为实现工艺参数对纳米纤维包芯纱的结构调控,采用连续水浴静电纺丝的方法,以聚对苯二甲酸乙二醇酯(PET)纤维为芯纱,聚酰胺6(PA6)纳米纤维为包覆层,制备兼具纳米纤维特性和传统纱线力学性能的纳米纤维包芯纱。对PET/PA6纳米纤维包芯纱的形态、晶体结构和力学性能进行分析与表征。结果表明:纳米纤维包芯纱具有良好的皮芯结构;PA6包覆层的纳米纤维直径为66~80 nm,其孔隙率随喷丝速率的提高而下降,结晶度在19%~24.15%范围内,且随喷丝速率的提高而减小;PA6纳米纤维包覆层的断裂强度和断裂伸长率随喷丝速率的增大而降低,其断裂强度降为常规PA6纤维的1/5;纳米纤维包芯纱保持了芯纱的强力与断裂伸长率等力学性能。
中图分类号:
[1] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1): 1-9. |
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1): 1-9.
doi: 10.1177/004051757204200101 |
|
[2] | SHUAKAT M N, LIN T. Recent developments in electrospinning of nanofiber yarns[J]. Journal of Nanoscience & Nanotechnolgy, 2014, 14(2): 1389-1408. |
[3] | 周筱雅, 马定海, 胡铖烨, 等. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(2): 113-119. |
ZHOU Xiaoya, MA Dinghai, HU Chengye, et al. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarn[J]. Journal of Textile Research, 2022, 43(2): 113-119. | |
[4] | 刘宇健, 谭晶, 陈明军, 等. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(2): 165-171. |
LIU Yujian, TAN Jing, CHEN Mingjun, et al. Research progress of electrospun nanofiber yarn[J]. Journal of Textile Research, 2020, 41(2): 165-171. | |
[5] | RAVANDI S A H, SANATGAR R H, DABIRIAN F. Wicking phenomenon in nanofiber-coated filament-yarns[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(3): 10-18. |
[6] | 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702. |
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic submicron fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University(Natural Science), 2020, 46(5): 694-702. | |
[7] |
SU C I, LAI T C, LU C H, et al. Yarn formation of nanofibers prepared using electrospinning[J]. Fibers and Polymers, 2013, 14(4): 542-549.
doi: 10.1007/s12221-013-0542-4 |
[8] |
TONG X, BIN J X. Preparation and characterization of polyester staple yarns nanowrapped with polysulfone amide fibers[J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12303-12312.
doi: 10.1021/acs.iecr.5b03505 |
[9] |
MAO N, CHEN W, MENG J, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018, 399: 406-413.
doi: 10.1016/j.jpowsour.2018.07.022 |
[10] | LIU C K, HE H J, SUN R J, et al. Preparation of continuous nanofiber core-spun yarn by a novel covering method[J]. Materials & Design, 2016, 112: 456-461. |
[11] |
HE J X, ZHOU Y M, WU Y C, et al. Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method[J]. Surface and Coatings Technology, 2014, 258: 398-404.
doi: 10.1016/j.surfcoat.2014.08.062 |
[12] |
HE J X, QI K, WANG L D, et al. Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn[J]. Fibers and Polymers, 2015, 16(6): 1319-1326.
doi: 10.1007/s12221-015-1319-8 |
[13] |
HE J X, ZHOU Y M, WANG L D, et al. Fabrication of continuous nanofiber core-spun yarn by a novel electrospinning method[J]. Fibers and Polymers, 2014, 15(10): 2061-2065.
doi: 10.1007/s12221-014-2061-3 |
[14] | YOUSEFZADEH M, LATIF M, TEO W E, et al. Producing continuous twisted yarn from well-aligned[J]. Polymer Engineering & Science, 2011, 51: 323-329. |
[15] |
JIANG R, YAN T, WANG T Q, et al. The preparation of PA6/CS-NPs nanofiber filaments with excellent antibacterial activity via a one-step multineedle electrospinning method with liquid bath circling system[J]. Journal of Applied Polymer Science, 2020. DOI:10.1002/app.49053.
doi: 10.1002/app.49053 |
[16] |
TIAN L, YAN T, PAN Z J. Fabrication of continuous electrospun nanofiber yarns with direct 3D processability by plying and twisting[J]. Journal of Materials Science, 2015, 50(21):7137-7148.
doi: 10.1007/s10853-015-9270-z |
[17] | 胡铖烨, 周歆如, 范梦晶, 等. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(9): 95-100. |
HU Chengye, ZHOU Xinru, FAN Mengjing, et al. Preparation and properties of skin-core micro/nano fiber composite yarn[J]. Journal of Textile Research, 2022, 43(9):95-100. | |
[18] | 闫涛. 静电纺PAN/石墨烯复合纳米纤维纱的制备及其应变传感性能[D]. 苏州: 苏州大学, 2019:3,43-44. |
YAN Tao. Preparation of electrospun PAN/graphene composite nanofiber yarn and its strain sensing performance[D]. Suzhou: Soochow University, 2019:3,43-44. | |
[19] | 蒙冉菊, 王铁军, 翁浦莹, 等. 静电纺丝工艺参数对SS/PEO纳米纤维形貌及直径的影响[J]. 丝绸, 2018, 55(12):37-42. |
MENG Ranju, WANG Tiejun, WENG Puying, et al. Effects of electrospinning parameters on the morphology and diameter of AS/PEO nanofibers[J]. Journal of Silk, 2018, 55(12): 37-42. | |
[20] | 刘呈坤, 贺海军, 孙润军, 等. 纺丝工艺对静电纺纳米纤维包芯纱包覆性能的影响[J]. 高分子材料科学与工程, 2016, 32(12): 82-86. |
LIU Chengkun, HE Haijun, SUN Runjun, et al. Effect of spinning process on the coating properties of electrospun nanofiber core-spun yarn[J]. Polymer Materials Science and Engineering, 2016, 32(12): 82-86. | |
[21] | 王怡婷, 詹建朝, 王迎. 静电纺制备聚氨酯-Fe3O4纳米纤维包芯纱[J]. 上海纺织科技, 2018, 46(6): 41-43,48. |
WANG Yiting, ZHAN Jianchao, WANG Ying. Electorspun of polyurethane-Fe3O4 nanofiber core spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(6): 41-43,48. | |
[22] | 周歆如, 胡铖烨, 范梦晶, 等. 基于水浴静电纺的纳米纤维包芯纱连续制备与性能[J]. 现代纺织技术, 2022, 30(6): 80-87. |
ZHOU Xinru, HU Chengye, FAN Mengjing, et al. Continuous preparation and properties of nanofiber core-spun yarn based on water bath electronspinning[J]. Advanced Textile Technology, 2022, 30(6): 80-87. | |
[23] | 王丹, 单小红, 潘红贵. Photoshop和Matlab软件在纳米纤维膜孔隙率测试中的应用[J]. 产业用纺织品, 2016, 34(6): 41-44. |
WANG Dan, SHAN Xiaohong, PAN Honggui. Application of Photoshop and Matlab software on porosity test of nanofibers mat[J]. Technical Textiles, 2016, 34(6): 41-44. | |
[24] | 丁彬, 俞建勇. 功能静电纺纤维材料[M]. 北京: 中国纺织出版社, 2019:10-11. |
DING Bin, YU Jianyong. Functional electrospinning nanofiber materials[M]. Beijing: China Textile & Apparel Press, 2019:10-11. | |
[25] | 姚穆. 纺织材料学[M]. 4版. 北京: 中国纺织出版社, 2009:136. |
YAO Mu. Textile materials[M]. 4th ed. Beijing: China Textile & Apparel Press, 2009: 136. |
[1] | 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151. |
[2] | 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224. |
[3] | 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40. |
[4] | 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49. |
[5] | 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124. |
[6] | 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76. |
[7] | 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能[J]. 纺织学报, 2023, 44(04): 115-123. |
[8] | 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37. |
[9] | 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10. |
[10] | 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18. |
[11] | 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27. |
[12] | 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35. |
[13] | 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41. |
[14] | 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78. |
[15] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33. |
|