纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 126-131.doi: 10.13475/j.fzxb.20220103101

• 纺织工程 • 上一篇    下一篇

基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能

段成红, 吴港本, 罗翔鹏()   

  1. 北京化工大学 机电工程学院, 北京 100029
  • 收稿日期:2022-01-14 修回日期:2023-03-02 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 罗翔鹏(1987—),男,讲师,博士。主要研究方向为先进有限元技术及计算机辅助工程,承压装备及管道设计与分析,金属激光增材制造等激光应用技术。E-mail:xpluo@mail.buct.edu.cn
  • 作者简介:段成红(1963—),女,教授,博士。主要研究方向为复合材料力学性能过程设备设计开发和结构优化,增材制造与激光制造技术应用。

Mechanical properties of carbon fiber reinforced epoxy resin woven composites based on DIGIMAT

DUAN Chenghong, WU Gangben, LUO Xiangpeng()   

  1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2022-01-14 Revised:2023-03-02 Published:2023-07-15 Online:2023-08-10

摘要:

为准确预测不同编织工艺参数下编织复合材料的等效弹性性能,拓宽碳纤维增强环氧树脂编织复合材料的应用领域。建立了考虑随纤维路经产生扭结缺陷的二维三轴编织复合材料的代表性体积单元(RVE),并基于平均场均匀化方法,利用DIGIMAT预测复合材料的等效弹性模量,分析不同编织角对编织复合材料等效工程常数的影响规律;其次基于强度失效准则,预测编织复合材料在单轴拉伸加载情况下的力学性能;最后通过数值模拟获得编织复合材料RVE的应力与应变。结果表明:预测的编织参数对等效工程常数的影响规律与试验测量一致,获得的应力、应变可为进一步研究其损伤破坏行为提供参考。

关键词: 编织复合材料, 力学性能, 代表性体积单元, DIGIMAT, 编织角

Abstract:

Objective Braided composites have many advantages such as high specific strength, high specific stiffness, high impact damage tolerance and designable mechanical properties, and have been widely used in aerospace, machinery and other fields, and it is particularly important to optimize or design their mechanical properties. In this paper, based on a new composite simulation software DIGIMAT, a representative volume element (RVE)considering the kink defects of fiber bundles with fiber path is established to accurately and quickly predict the equivalent elastic properties of the material at different braiding angles and to explore the influence of the weaving angle on them; and then the stress distribution of two-dimensional triaxially braided composite RVE is obtained to provide a basis for further study of its damage and failure.

Method Although the internal structure of two-dimensional triaxially braided composites is relatively complex, it has a certain periodic distribution on the mesoscale. Therefore, an RVE considering the kink defects caused by fiber bundles along the fiber path was established by using the nonlinear composite modeling platform DIGIMAT, and the equivalent elastic properties of materials were predicted based on the DIGIMAT-MF module mean field homogenization method. Based on the strength failure criterion, the DIGIMAT-FE module was adopted to predict the mechanical properties of braided composites with different braiding angles under uniaxial tensile loading (peak strain of 0.5%).

Results The equivalent engineering constants of two-dimensional triaxial braided composite RVE were predicted with the longitudinal tensile modulus E1 of 48.33 GPa, the transverse tensile modulus E2 of 6.70 GPa, and the longitudinal Poisson's ratio μ12 of 0.71, the transverse Poisson's ratio μ23 of 0.45, and the shear modulus G12 of 6.77 GPa. In addition, nine braiding angles of 15°, 19°, 23°, 27°, 30°, 35°, 37°, 41° and 45° were selected to analyze their influence on the equivalent engineering constant. The longitudinal tensile modulus E1 was inversely proportional to the braiding angle. With the increase of braiding angle, E1 demonstrated a gradual decrease, whereas the transverse tensile modulus E2 showed an opposite trend. With the increase of braiding angle, the longitudinal shear modulus G12 firstly increased and then decreased, while the transverse shear modulus G23 remained virtually unchanged (Fig. 3). With the gradual increase of braiding angle, the longitudinal Poisson's ratio μ12 first increased and then decreased, while the transverse Poisson's ratio μ23 shows a decreasing trend (Fig. 4). The longitudinal uniaxial tensile simulation of two-dimensional triaxially braided composite RVE with different braiding angles showed that the elastic modulus of the material decreases with the increase of braiding angle, while the fracture strain is the opposite (Fig. 5). From the contour, it can be observed that the overall stress distribution is not uniform, and the stress peak tends to appear at the yarn, while the stress valley appears at the matrix, and a large stress gradient exists in the contact area between the two (Fig. 6 and Fig. 7). This is mainly because under the longitudinal tensile load, the axial fiber bundle bears most of the load, and the warp and weft yarns also bear part of the load, while the matrix basically does not bear the load effect, the warp and weft yarns improve the longitudinal bearing capacity of the material, so that the structure bears the load more uniformly. There are obvious stress concentrations in the mutual twist zone and the contact zone between the yarns and the matrix, which may lead to local deformation and crack expansion, and then cause material failure.

Conclusion The effect law of braiding angle on the equivalent engineering constant derived in this study is consistent with the law derived by experimental methods in the documents, the accuracy of the finite element model developed in this paper is verified. Based on this finite element model, the stress distribution of the two-dimensional triaxially braided composite RVE was predicted. The overall stress distribution is not uniform, and the stress of the yarn is significantly higher than the stress of the matrix. There are obvious stress concentrations in the yarn mutual kink area and the contact area between the yarn and the matrix, which may lead to the occurrence of local deformation and crack expansion, and then cause the material failure.

Key words: braided composite, mechanical property, representative volume element, DIGIMAT, braiding angle

中图分类号: 

  • TB332

图1

Mori-Tanaka模型示意图"

表1

碳纤维和环氧树脂主要力学性能参数"

材料 密度/
(g·cm-3)
纵向
拉伸模
E1/
MPa
横向
拉伸模
E2/
MPa
剪切
模量
G12/
MPa
横向
泊松
μ23
纵向
泊松
μ12
碳纤维 1.79 230 000 14 000 9 000 0.30 0.25
环氧树脂 1.30 3 600 3 600 0.35 0.35

图2

二维三轴编织复合材料代表性体积单元有限元模型"

图3

弹性模量和剪切模量随编织角变化曲线"

图4

泊松比随编织角变化曲线"

图5

编织角对二维三轴编织复合材料力学性能的影响"

图6

23°、30°和37°二维三轴编织复合材料Von Mises 应力云图"

图7

23°、30°和37°二维三轴编织复合材料应变云图"

[1] GAO Ziyue, CHEN Li. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures, 2021(263): 113685-113693.
[2] BILISIK Kadir. Multiaxis three-dimensional weaving for composites: a review[J]. Textile Research Journal, 2012, 82(7): 725-743.
doi: 10.1177/0040517511435013
[3] 翟军军. 基于多尺度理论的三维编织复合材料力学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2018: 5-35.
ZHAI Junjun. Study on mechanical properties of three-dimensional braided composites based on multi-scale theory[D]. Harbin: Harbin University of Science and Technology, 2018: 5-35.
[4] MACANDER A B, CRANE R M. Fabrication and mechanical properties of multidimensionally (x-D) braided composite materials[J]. Astm Special Technical Publication, 1986, 89 (3): 422-443.
[5] KALIDINDI S R, ABUSAFIEH A. Longitudinal and transverse moduli and strengths of low angle 3-D braided composites[J]. Journal of Composite Materials, 1996, 30(8): 885-905.
doi: 10.1177/002199839603000802
[6] SHAH S Z H, MEGAT-YUSOFF P S M, KARUPPANAN S, et al. Multiscale damage modelling of 3D woven composites under static and impact loads[J]. Composites Part A: Applied Science and Manufacturing, 2021.DOI:10.1016/j.compositesa.2021.106659.
doi: 10.1016/j.compositesa.2021.106659
[7] ZHANG Fa, WAN Yumin, GU Bohong, et al. Impact compressive behavior and failure modes of four-step three-dimensional braided composites-based meso-structure model[J]. International Journal of Damage Mechanics, 2015, 24(6): 805-827.
doi: 10.1177/1056789514554921
[8] 张迪, 郑锡涛, 孙颖, 等. 三维编织与层合复合材料力学性能对比试验[J]. 航空材料学报, 2015, 35(3): 89-96.
ZHANG Di, ZHENG Xitao, SUN Ying, et al. Comparative experiment on mechanical properties of three-dimensional braided and laminated compo-sites[J]. Journal of Aeronautical Materials, 2015, 35(3): 89-96.
[9] CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(6): 1037-1053.
doi: 10.1016/j.compositesa.2008.02.016
[10] NAOURA N, VASIUKOV D, PARK C H, et al. Meso-FE modelling of textile composites and X-ray tomography[J]. Journal of Materials Science, 2020, 55(36): 16969-16989.
doi: 10.1007/s10853-020-05225-x
[11] 孙胜然, 吴东乐, 罗嘉倩, 等. 基于Digimat RVE的碳纤维增强聚丙烯复合材料性能分析[J]. 中国造纸学报, 2021, 36(1): 44-51.
SUN Shengran, WU Dongle, LUO Jiaqian, et al. Properties analysis of carbon fiber reinforced polypropylene composites based on Digimat RVE[J]. Transactions of China Pulp and Paper, 2021, 36(1): 44-51.
[12] 刘振宇, 叶燎原, 潘文. 等效体积单元(RVE)在砌体有限元分析中的应用[J]. 工程力学, 2003, 20(2): 31-35.
LIU Zhenyu, YE Liaoyuan, PAN Wen. Application of equivalent volume element (RVE) in masonry finite element analysis[J]. Engineering Mechanics, 2003, 20(2): 31-35.
[13] 高兴忠. 三维编织碳纤维/环氧树脂复合材料多次冲击压缩破坏机理及其编织角效应[D]. 上海: 东华大学, 2019: 10-11.
GAO Xingzhong. Failure mechanism and braided angle effect of three-dimensional braided carbon fiber/epoxy resin composites under multiple impact compre-ssion[D]. Shanghai: Donghua University, 2019: 10-11.
[14] 董纪伟. 基于均匀化理论的三维编织复合材料宏细观力学性能的数值模拟[D]. 南京: 南京航空航天大学, 2007: 39-40.
DONG Jiwei. Numerical simulation of macro and micro mechanical properties of three-dimensional braided composites based on homogenization theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 39-40.
[1] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[2] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[3] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[4] 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54.
[5] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[6] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[7] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[8] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[9] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[10] 张威, 蒋喆, 徐琪, 孙宝忠. 形状记忆复合编织圆管的制备及其热致回复性能[J]. 纺织学报, 2022, 43(11): 68-74.
[11] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[12] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[13] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[14] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[15] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!