纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 175-183.doi: 10.13475/j.fzxb.20220202401

• 染整与化学品 • 上一篇    下一篇

制浆用废旧棉织物的脱色性能及其机制

王伟1, 吴嘉欣1, 张晓云1, 张传杰1,2,3(), 宫兆庆3   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 威海创新研究院, 山东 威海 264200
    3.威海市织物功能助剂重点实验室, 山东 威海 264500
  • 收稿日期:2022-02-17 修回日期:2022-11-01 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 张传杰(1982—),男,副教授,博士。主要研究方向为功能纤维及纺织品。E-mail:jcuse@163.com
  • 作者简介:王伟(1998—),男,硕士生。主要研究方向为功能纤维及纺织品。
  • 基金资助:
    国家重点研发计划项目(2020YFC1910301)

Decolorization properties and mechanism of waste cotton fabrics for preparing cotton pulp

WANG Wei1, WU Jiaxin1, ZHANG Xiaoyun1, ZHANG Chuanjie1,2,3(), GONG Zhaoqing3   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Weihai Innovation Institute, Qingdao University, Weihai, Shandong 264200, China
    3. Weihai Key Laboratory of Functional Textile Auxiliaries, Weihai, Shandong 264500, China
  • Received:2022-02-17 Revised:2022-11-01 Published:2023-07-15 Online:2023-08-10

摘要:

针对废旧棉织物制备棉浆粕中存在的能耗高和纤维素降解严重等问题,急需开发温和脱色技术实现清洁制浆。采用氢氧化钠-保险粉体系进行废旧棉织物的脱色处理,研究脱色过程中各因素的作用,以及脱色处理对棉织物结构与性能的影响,探究温和脱色机制。结果表明:氢氧化钠可以提升保险粉的稳定性,同时促进棉织物上的染料发生水解扩散到脱色液中;保险粉通过还原作用破坏织物上以及脱色液中染料的发色团,提升染料水解反应程度;在氢氧化钠和保险粉的协效作用下,脱色后棉织物上无染料残留,明度值从16.52提升至70.00以上;脱色处理过程中棉织物的化学结构和结晶结构几乎不受影响,纤维素分子质量及其分布变化不大,脱色棉织物断裂强力保留率在98%以上,不影响后续制浆使用。

关键词: 废旧棉织物, 脱色机制, 氢氧化钠, 保险粉, 浆粕, 温和脱色技术

Abstract:

Objective It is urgent to adopt the mild decolorization technology for waste cotton fabrics to achieve clean pulping to resolve the problems that the high consumptions of energy, as well as severe degradation of cellulose during preparation of cotton pulp from waste cotton fabrics.

Method Due to the violent reaction when decolorizing cotton fabric with oxidant, the breaking strength of the decolorized cotton fabric is lost more, and the molecular chain is broken seriously. While the reaction when decolorizing cotton fabric with reductant is relatively mild. A method for decolorizing was conducted to black mercerized cotton fabric, named as the sodium hydroxide-sodium hydrosulfite system through orthogonal experiment and single factor experiment. The role of decolorization parameters, influence of decolorization treatment on the structure and properties of cotton fabrics and mild decolorization mechanism were investigated.

Results Sodium hydroxide can improve the stability of sodium hydrosulfite (Fig. 1), and can hydrolyze and destroy the covalent bond between reactive dyes and black mercerized cotton fabric, so that the dyes on cotton fabric can hydrolyze and diffuse into the decolorization solution(Fig. 2). At the same time, the dye chromophore group on the cotton fabric and in the solution will be destroyed under the reduction of sodium hydrosulfite (Fig. 3). Because sodium hydrosulfite itself will undergo invalid decomposition, sodium hydrosulfite is added in a two-step process decomposes more active substances for decolorization and shorten the time of decolorization reaction (Fig. 5 and Fig. 6), and the lightness value of the decolorized cotton fabric is increased from 16.52 to above 70.00 by adopting the best two-step decolorization process. Almost no dye remains on the cotton fibers under the synergistic effect of sodium hydroxide and insurance powder (Fig. 7). The decolorization system has been proved to be able to reduce the strength loss of the cotton fabric after bleaching, and the break strength retention rate of the cotton fabric after decolorization in both warp and weft directions is more than 98% by adopting the best two-step decolorization process(Fig. 8). The chemical structure and crystal structure of cotton fabric are hardly affected during the decolorization process. Among which, sodium hydrosulfite will destroy the chromophore group of the dye without destroying the covalent bond between the dye and the cotton fiber. sodium hydroxide will hydrolyze the covalent bond between the dye and the fiber, and the hydrosulfite will promote the hydrolysis of the covalent bond by sodium hydroxide (Fig. 9). Only a small amount of the crystal area of cotton cellulose has been damaged, and most of the crystal area and crystal structure are not affected during the decolorization process of sodium hydroxide-sodium hydrosulfite system (Fig. 10), and the position of the diffraction peak of cotton cellulose has not changed before and after decolorization. Finally, it has been found that the molecular weight and its distribution of cotton fiber were almost unchanged before and after decolorization by gel liquid chromatography (Tab. 3).

Conclusion In summary, sodium hydroxide can promote the hydrolysis of covalent bond between reactive dyes and cotton fabric, and transfer dyes on cotton fabric to decolorization solution; and sodium hydrosulfite can destroy the chromophore group of the dye to achieve the purpose of decolorization. The coexistence of sodium hydroxide and sodium hydrosulfite in the decolorization solution can promote each other, thereby realizing the decolorization of cotton fabrics. Thus, the sodium hydroxide-sodium hydrosulfite system, which be adopted to decolorize cotton fabric under normal pressure and high temperature, can achieve mild decolorization of waste cotton fabric without affecting subsequent pulping.

Key words: waste cotton fabric, decolorization mechanism, sodium hydroxide, sodium hydrosulfite, pulp, mild decolorization technology

中图分类号: 

  • TS102.9

表1

棉织物脱色正交试验因素水平表"

水平 A
保险粉
质量浓度/
(g·L-1)
B
氢氧化钠
质量浓度/
(g·L-1)
C
脱色
温度/℃
D
脱色
时间/min
1 0 20 40 30
2 3 40 60 60
3 6 60 80 90

表2

棉织物脱色的正交试验结果"

试验
序号
A B C D 织物
明度
1 0 20 40 30 17.28
2 0 40 60 60 18.57
3 0 60 80 90 48.20
4 3 20 60 90 44.66
5 3 40 80 30 54.86
6 3 60 40 60 32.75
7 6 20 80 60 61.92
8 6 40 40 90 29.49
9 6 60 60 30 43.66
k1 28.02 41.29 26.51 38.60
k2 44.09 34.31 35.63 37.75
k3 45.02 41.54 54.99 40.78
R 17.00 7.20 28.48 3.03
优选
水平
A3 B3 C3 D3

图1

氢氧化钠和保险粉质量浓度对脱色效果的影响"

图2

不同时间氢氧化钠脱色棉织物的K/S值曲线及其脱色溶液的吸光度曲线"

图3

不同时间保险粉脱色棉织物的K/S值曲线及其脱色溶液的吸光度曲线"

图4

脱色温度对脱色效果的影响"

图5

一步法添加保险粉时脱色棉织物的K/S值曲线及其脱色溶液的吸光度曲线"

图6

二步法添加保险粉时脱色棉织物的K/S值曲线及其脱色溶液的吸光度曲线"

图7

脱色前后棉织物的表面和截面形貌"

图8

脱色前后棉织物的断裂强力"

图9

脱色前后棉织物的红外光谱图"

图10

脱色前后棉织物的X射线衍射谱图"

表3

棉织物的分子质量及其分布"

样品
编号
数均分子量/
(g·mol-1)
黏均分子量/
(g·mol-1)
重均分子量/
(g·mol-1)
分散性
(PD)
1# 636 420 1 431 348 1 656 765 2.60
2# 1 459 068 2 957 050 3 297 762 2.26
3# 1 399 317 2 952 943 3 190 441 2.28
[1] JI J L, HAMOUDA H. Current status of fiber waste recycling and its future[J]. Advanced Materials Research, 2014, 2930(878): 122-131.
[2] MA Y, ROSSON L, WANG X, et al. Upcycling of waste textiles into regenerated cellulose fibres: impact of pretreatments[J]. Journal of The Textile Institute, 2019, 111(5): 630-638.
doi: 10.1080/00405000.2019.1656355
[3] LOPATINA Anastasiia, ANUGWOM Ikenna, BLOT HervÉ, et al. Re-use of waste cotton textile as an ultrafiltration membrane[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 1-29.
[4] LONG Jiajie, LIU Bo, WANG Guofu, et al. Photocatalitic stripping of fixed reactive red X-3B dye from cotton with nano-TiO2/UV system[J]. Journal of Cleaner Production, 2017, 165: 788-800.
doi: 10.1016/j.jclepro.2017.07.149
[5] YANG Yuhui, XU Pengjun, CHEN Jun, et al. Immobilization of nZVI particles on cotton fibers for rapid decolorization of organic dyes[J]. Cellulose, 2021, 28(12): 7925-7940.
doi: 10.1007/s10570-021-03993-6
[6] 刘德驹, 王华印. 涡流纺筒子棉纱剥色技术[J]. 纺织学报, 2011, 32(2): 84-87, 95.
LIU Deju, WANG Huayin. Stripping technology for vortex spun cotton yarn packages[J]. Journal of Textile Research, 2011, 32(2): 84-87, 95.
[7] YIGIT I, EREN S, EREN H A, et al. Comparsion of the colour fading effects of sodium hypochlorite and ozone treatments[J]. Coloration Technology, 2021, 137(6): 615-624.
doi: 10.1111/cote.v137.6
[8] 涂莉, 孟家光, 李欣, 等. 废旧毛/丝/棉混纺面料的组分分析及其剥色工艺[J]. 纺织学报, 2019, 40(11): 75-80, 87.
TU Li, MENG Jiaguang, LI Xin, et al. Composition analysis and stripping process of waste wool/silk/cotton blended fabric[J]. Journal of Textile Research, 2019, 40(11): 75-80, 87.
doi: 10.1177/004051757004000111
[9] 解昌峰, 刘波, 孙建平, 等. 活性染料染色棉织物的水溶液浸渍光催化剥色[J]. 纺织学报, 2017, 38(9): 81-88.
XIE Changfeng, LIU Bo, SUN Jianping, et al. Photocatalytic color stripping of cotton fabric dyed with reactive dye by employing UV/H2O system[J]. Journal of Textile Research, 2017, 38(9): 81-88.
doi: 10.1177/004051756803800110
[10] FARIHA Arooj, NASIR Ahmed, IRFAN A S. Application of ozone in stripping of cotton fabric dyed with reactive dyes[J]. Ozone: Science & Engineering, 2019, 42(4): 1-12.
[11] EREN H A, AVINC O, BURCU E, et al. Ultrasound-assisted ozone bleaching of cotton[J]. Cellulose, 2014, 21(6): 4643-4658.
doi: 10.1007/s10570-014-0420-2
[12] KIM S T, LIM J Y, CHOI H J, et al. Solution characteristics of nitrocellulose[J]. Journal of Industrial and Engineering Chemistry, 2006, 12(1): 161-164.
[13] CHUNG Chinkap, LEE Myunghee, CHOE Eun Kyung. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy[J]. Carbohydrate Polymers, 2004, 58(4): 417-420.
doi: 10.1016/j.carbpol.2004.08.005
[14] 杨苗秀, 刘子迪, 许亮, 等. 离子液体改性微晶纤维素的制备及其对铜离子的吸附[J]. 陕西科技大学学报, 2019, 37(5): 13-19.
YANG Miaoxiu, LIU Zidi, XU Liang, et al. Preparation of ionic liquid functionalized microcrystalline cellulose and its application of adsorption properties of copperion[J]. Journal of Shaanxi University of Science & Technology, 2019, 37(5): 13-19.
[15] HE Fangne, LI Xiang, LONG Jiajie, et al. Color stripping of reactive-dyed cotton fabric in a UV/sodium hydrosulfite system with a dipping manner at low temperature[J]. Cellulose, 2019, 26(6): 4125-4142.
doi: 10.1007/s10570-019-02336-w
[1] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
[2] 潘忆乐, 钱丽颖, 徐纪刚, 何北海, 李军荣. Lyocell纤维纺丝浆粕溶解性的影响因素分析[J]. 纺织学报, 2021, 42(10): 27-33.
[3] 潘佳俊, 夏兆鹏, 张海宝, 卢杨, 赵吉林, 王学农, 王亮, 刘雍. 牦牛绒过氧化氢/过硫酸铵脱色体系工艺优化及其机制[J]. 纺织学报, 2021, 42(04): 101-106.
[4] 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8.
[5] 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(01): 21-25.
[6] 王文聪 杜淑宁 王鸿博 高卫东. 低取代羟乙基纤维素在碱溶剂中的溶解行为及其机制[J]. 纺织学报, 2018, 39(10): 22-27.
[7] 钟智丽 朱敏 张宏杰 翁琦. 大麻纤维在氯化锂/N,N-二甲基乙酰胺溶解体系中的溶解特性[J]. 纺织学报, 2016, 37(11): 92-97.
[8] 王莉 杨增光 张健飞 巩继贤 孟繁杰. 罗布麻秆粘胶纤维生产工艺技术[J]. 纺织学报, 2013, 34(6): 26-29.
[9] 何建新;章伟;李克兢;崔世忠;王善元. 竹浆粕在漂白流程中的XPS分析[J]. 纺织学报, 2009, 30(12): 13-17.
[10] 叶静;张明;何建新;王善元. 竹浆粕加工中的漂白工艺[J]. 纺织学报, 2009, 30(11): 37-42.
[11] 印霞;何建新;于伟东. 竹浆纤维与几种浆粕纤维形态及结构的比较[J]. 纺织学报, 2008, 29(10): 17-20.
[12] 程博闻;汪渊龙;任元林;丁长坤. 电子束活化纤维素浆粕的研究[J]. 纺织学报, 2007, 28(6): 16-19.
[13] 尤秀兰;刘兆峰;曹煜彤;胡祖明. 挤出PPTA冻胶体厚度对浆粕性能的影响[J]. 纺织学报, 2006, 27(9): 22-24.
[14] 张静峰;靳向煜;饶剑辉. 浆粕及木浆纸水刺非织造布的结构与性能[J]. 纺织学报, 2005, 26(3): 51-53.
[15] 尤秀兰;刘兆峰;傅群;胡祖明. PVP存在下直接缩聚法制备PPTA浆粕[J]. 纺织学报, 2003, 24(05): 9-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!