纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 214-221.doi: 10.13475/j.fzxb.20211105002

• 综合述评 • 上一篇    下一篇

导电纱线制备方法与应用的研究进展

李龙(), 张弦, 吴磊   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2021-11-09 修回日期:2022-06-29 出版日期:2023-07-15 发布日期:2023-08-10
  • 作者简介:李龙(1964―),男,教授,博士。主要研究方向为天然纤维材料及其纺织技术。E-mail: lilong2188@126.com
  • 基金资助:
    陕西省教育厅科研计划项目(18JK0337)

Research progress in preparation and application of conductive yarn materials

LI Long(), ZHANG Xian, WU Lei   

  1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-11-09 Revised:2022-06-29 Published:2023-07-15 Online:2023-08-10

摘要:

为进一步研究用于柔性智能可穿戴装置的低电阻、多功能、耐用时间长、安全性能好的导电纱线材料,以纱线为研究对象,综述了近年来利用纺纱技术、涂覆技术、涂覆与纺纱相结合技术、静电纺丝辅助技术等制备导电纱线材料的方法,分析了相关制备方法的优点与存在的不足,阐述了导电纱线材料在电磁防护、传感器件、储能器件、信号传输、电加热等柔性智能可穿戴器件中的应用。最后,结合导电纱线加工简便、量产化以及生命周期中的性能稳定性与环境安全性,提出了在不同应用领域导电纱线材料主要性能的改进方向,并展望了导电纱线材料未来的研究与发展趋势。

关键词: 智能可穿戴装置, 导电纱线, 纺纱技术, 涂覆, 静电纺丝

Abstract:

Significance The good conductivity of the material is the basis of manufacturing smart wearable devices. Because textile material is light, soft and good in air permeability and shape adaptability, textile-based flexible smart wearable devices have been attracting extensive attention from researchers. In recent years, the researchers have been using various techniques to integrate conductive materials with textile materials for manufacturing textile flexible intelligent wearable device for real-time monitoring of human health, friction power generation, personal thermal management, energy storage and so on. Conductive yarn is one of textile intelligent wearable materials, in order to further study the low-resistance and multi-performance conductive yarn for smart wearable devices, textile yarns was taken as the object. The methods of preparing conductive yarn materials were reviewed in relation to spinning technology, coating, coating combined with spinning technology and electrostatic spinning technology and application of the conductive yarns in electromagnetic protection, sensing device, energy storage device, transmission and power supply, artificial muscle, electric heating and thermal management device in recent years.

Progress The advantages and disadvantages of conductive preparation methods are analyzed. Both conventional textile fibers and conductive fibers are spun into yarns by blending or wrapping using spinning technology, which can produce conductive yarns in batches. Besides, the yarn has excellent textile characteristics. However the conductive yarn is seldom used in resistance strain sensing. It is difficult for the mass production of conductive yarn prepared by coating technology, and the yarn has poor performance stability and poor weaving property, the preparation process is complicated and coating waste liquid may cause environmental pollution. Compared with the spinning technology, the method of preparing conductive yarn by coating is flexible, and the yarn has wide application. The auxiliary technology of electrostatic spinning nanofibers plays an important role in developing conductive yarns, and the conductive yarn with sheath-core structure prepared by electrostatic spinning technology overcomes some problems existing in conventional conductive coating. However, it is difficult to mass-produce conductive yarn by this method. The conductive yarn prepared by coating combined with spinning technology has good textile characteristics, but the conductive coating waste liquid of textile fiber materials may also cause environmental pollution.

Conclusion and Prospect The future research and development trends of conductive yarn materials are proposed by combining the performance stability and the environmental safety of conductive yarn in its life cycle. It is proposed that the stability and service life of sensing performance under large strain needs to be further improved for the conductive yarn prepared used for resistance strain sensor. The conductive yarn needs additional flame retardant function,elasticity function and flexibility for their use in electric heating products so as to improve the use safety and wearing comfort. It is necessary to further study the change law of yarn conductivity under special environmental conditions (such as wet environment, high temperature environment, low temperature environment), so as to develop textile-based flexible smart wearable devices to be used in different temperature and humidity environments. It is still a research focus to develop conductive yarn materials with textile characteristics and lower linear resistance and good linear resistance uniformity. In order to popularize the practical application of textile flexible intelligent wearable devices, a development goal is that the whole life cycle of manufacturing, using and discarding of the conductive yarn has no negative impact on human health and environment. It is necessary to further optimize the structure of conductive yarn and innovate the integration technology of conductive materials and textile fiber materials, and improve the durability, sensibility, weaving property, biodegradability and mass production capacity of the conductive yarn.

Key words: smart wearable device, conductive yarn, spinning technology, coating, electrostatic spinning

中图分类号: 

  • TS101.8
[1] 陶肖明, 刘苏, 杨宝, 等. 织物电子器件及系统的发展现状、科学问题、技术核心和应用展望[J]. 科学通报, 2021, 66(24):1-17.
TAO Xiaoming, LIU Su, YANG Bao, et al. Recent advances, scientific issue, key technologies and perspective of textile electronics[J]. Chinese Science Bulletin, 2021, 66(24):1-17.
[2] MORSHED M N, ASADI M M, PERSSON N, et al. Development of a multifunctional graphene/ Fe-loaded polyester textile: robust electrical and catalytic properties[J]. Dalton Transactions, 2020, 49(47):17281-17300.
doi: 10.1039/D0DT03291C
[3] AHMED A, HOSSAIN M M, ADAK B, et al. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications[J]. Chemistry of Materials, 2020, 32(24):10296-10320.
doi: 10.1021/acs.chemmater.0c03392
[4] DU X, TIAN M, SUN G, et al. Self-powered and self-sensing energy textile system for flexible wearable applications[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55876-55883.
[5] 赵颖会, 武辰爽, 王亚洲, 等. MXene改性纺织品在柔性应变传感领域研究进展[J]. 纺织高校基础科学学报, 2022, 35(1):48-60.
ZHAO Yinghui, WU Chenshuang, WANG Yazhou, et al. Research progress of MXene-modified textiles in the field of flexible strain sensing[J]. Basic Sciences Journal of Textile Universities, 2022, 35(1):48-60.
[6] 蒋连意, 姚雪烽, 邢慧娇, 等. 石墨烯银层层组装纯棉导电纱及性能分析[J]. 棉纺织技术, 2019, 47(7):26-30.
JAING Lianyi, YAO Xuefeng, XING Huijiao, et al. Manufacture of grapheme silver layer-by-layer assembled pure cotton conductive yarn and its property analyses[J]. Cotton Textile Technology, 2019, 47(7):26-30.
[7] 温泽明, 代国亮, 陈剑英, 等. 液态金属涂覆的弹性导电纱线的制备及性能[J]. 北京服装学院学报(自然科学版), 2020, 40(3):9-14.
WEN Zeming, DAI Guoliang, CHEN Jianying, et al. Preparation and properties of elastic conductive yarn coated by liquid metal[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2020, 40(3):9-14.
[8] SIMGE U, MARION S, KANIT H, et al. Additive-free aqueous MXene inks for thermal inkjet printing on textiles[J]. Small, 2021.DOI:10.1002/smll.2020063761.
doi: 10.1002/smll.2020063761
[9] CARNEIRO M R, ANIBAL T A, TAVAKOLI M. Wearable and comfortable e-textile headband for long-term acquisition of forehead EEG signals[J]. IEEE Sensors Journal, 2020, 20(24): 15107-15116.
doi: 10.1109/JSEN.7361
[10] 熊莹, 陶肖明. 智能传感纺织品研究进展[J]. 针织工业, 2019(7):8-12.
XIONG Ying, TAO Xiaoming. Research progress of smart sensing textiles[J]. Knitting Industries, 2019(7): 8-12.
[11] HOUSSEINOU B, LAI T, VASILIKI P, et al. Cotton fabrics coated with few-layer graphene as highly responsive surface heaters and integrated lightweight electronic-textile circuits[J]. ACS Applied Nano Materials, 2020, 3(10):9771-9783.
doi: 10.1021/acsanm.0c01861
[12] ASADI M M, TARIQ B, NILS-KRISTER P. Electrostatic grafting of graphene onto polyamide 6,6 yarns for use as conductive elements in smart textile applications[J]. New Journal of Chemistry, 2020, 44(18):7591-7601.
doi: 10.1039/C9NJ06437K
[13] 师奇松, 谢瑛鸾, 戴晔, 等. 静电纺丝制备荧光导电双功能复合纳米纤维及其表征[J]. 功能高分子学报, 2017, 30(1): 77-82.
SHI Qisong, XIE Yingluan, DAI Ye, et al. Preparation and characterization of luminescene electrical bi-functional composite nanofibers via electrospinning technique[J]. Journal of Functional Polymers, 2017, 30(1):77-82.
[14] 刘辅庭. 静电纺制造丝纳米纤维和静电喷雾制造导电纤维[J]. 现代丝绸科学与技术, 2018, 33(3):39-40.
LIU Futing. Electrostatic spinning of silk nanofibers and electrostatic spraying of conductive fibers[J]. Modern Silk Science & Technology, 2018, 33(3):39-40.
[15] LIN J H, LIN T A, CHEN A P, et al. Electromagnetic shielding effectiveness of physical property PET/stainless steel composite fabrics[J]. Advanced Materials Research, 2014, 910: 210-213.
doi: 10.4028/www.scientific.net/AMR.910
[16] LOU C W, LI T T, HWANG P W, et al. Preparation technique and EMI shielding evaluation of flexible conductive composite fabrics made by single and double wrapped yarns[J]. Journal of Engineered Fibers and Fabrics, 2017, 12(4):78-86.
[17] 赵亚茹, 肖红, 陈剑英. 不锈钢短纤维/棉包缠氨纶纱的弹性与电学性能[J]. 纺织学报, 2020, 41(3): 45-50.
ZHAO Yaru, XIAO Hong, CHEN Jianying. Elastic and electrical properties of stainless steel fiber/cotton blended spandex wrap yarn[J]. Journal of Textile Research, 2020, 41(3): 45-50.
[18] SHAHZAD A, RASHEED A, KHALIQ Z, et al. Processing of metallic fiber hybrid spun yarns for better electrical conductivity[J]. Materials and Manufacture Processes, 2019, 34(9):1008-1015.
[19] YANG Y, YU W Y, WANG F. Structural design and physical characteristics of modified ring-spun yarns intended for-textiles: a comparative study[J]. Textile Research Journal, 2019, 89(2):121-132.
doi: 10.1177/0040517517741154
[20] 张鲁燕, 杨莹莹, 侍康妮, 等. 不锈钢丝/桑蚕丝复合导电纱的制备与性能研究[J]. 丝绸, 2019, 56(3): 1-6.
ZHANG Luyan, YANG Yingying, SHI Kangni, et al. Study on preparation and properties of stainless steel wire/silk composite conductive yarn[J]. Journal of Silk, 2019, 56(3): 1-6.
[21] GUO L, BERGLIN L, MATTILA H. Improvement of electro-mechanical properties of strain sensors made of elastic-conductive hybrid yarns[J]. Textile Research Journal, 2012, 82(19): 1937-1947.
doi: 10.1177/0040517512452931
[22] YANG T, WANG X, YANG Q, et al. Bioinspired temperature-sensitive yarn with highly stretchable capability for healthcare applications[J]. Advanced Materials Technology, 2021.DOI: 10.1002/admt.202001075.
doi: 10.1002/admt.202001075
[23] LEE H, ROH J. Wearable electromagnetic energy-harvesting textiles based on human walking[J]. Textile Research Journal, 2019, 89(13): 2532-2541.
doi: 10.1177/0040517518797349
[24] MA L, WU R, LIU S, et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue[J]. Advanced Materials, 2020.DOI: 10.1002/adma.202003897.
doi: 10.1002/adma.202003897
[25] CHOI M, KIM J. Preparation and transmission characteristics of hybrid structure yarns with nylon fiber for smart wear[J]. Journal of Engineered Fibers and Fabrics, 2018, 13(2):39-45.
[26] PEI Z, ZHANG Y, ZHEN C. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system[J]. Textile Research Journal, 2019, 89(1):113-118.
doi: 10.1177/0040517517736477
[27] SONG Y, XU W, RONG M, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11):1089-1104.
doi: 10.3144/expresspolymlett.2020.88
[28] ABED A, SAMOUH Z, COCHRANE C, et al. Piezo-resistive properties of bio-based sensor yarn made with sisal fibre[J]. Sensors, 2021.DOI:10.3390/s21124083.
doi: 10.3390/s21124083
[29] SOURI H, BHATTACHARYYA D. Highly stretchable and wearable strain sensors using conductive wool yarns with controllable sensitivity[J]. Sensors and Actuators A: Physical, 2019, 285: 142-148.
doi: 10.1016/j.sna.2018.11.008
[30] SOURI H, BHATTACHARYYA D. Wearable strain sensors based on electrically conductive natural fiber yarns[J]. Materials and Design, 2018, 154: 217-227.
doi: 10.1016/j.matdes.2018.05.040
[31] LIU Y, LI Z, FENG Y, et al. Scale production of conductive cotton yarns by sizing process and its conductive mechanism[J]. SN Applied Sciences, 2021.DOI:10.1007/s42452-021-04493-9.
doi: 10.1007/s42452-021-04493-9
[32] DATTA M, CHAUDHURIB A, MITRA M, et al. Development of biodegradable conductive cotton yarns by in-situ polymerisation of pyrrole[J]. Journal of The Textile Institute, 2019, 110(1):10-15.
doi: 10.1080/00405000.2018.1455312
[33] MA H, GAO Y, LIU W, et al. Light-weight strain sensor based on carbon nanotube/epoxy composite yarn[J]. Journal of Materials Science, 2021, 56: 13156-13164.
doi: 10.1007/s10853-021-06146-z
[34] ISLAM G M N, COLLIE S, QASIM M, et al. Highly stretchable and flexible melt spun thermoplastic conductive yarn for smart textiles[J]. Nanomaterials, 2020.DOI:10.3390/NANO10122324.
doi: 10.3390/NANO10122324
[35] WU X D, HAN Y Y, ZHANG X X, et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive Layer@polyurethane yarn for tiny motion monitoring[J]. ACS Applied Materials Interfaces, 2016, 8: 9936-9945.
doi: 10.1021/acsami.6b01174
[36] ZHU G, REN P, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials Interfaces, 2019, 11: 23649-23658.
doi: 10.1021/acsami.9b08611
[37] ZHANG Y, ZHANG W, YE G, et al. Core-sheath stretchable conductive fibers for safe underwater wearable electronics[J]. Advanced Materials Technologies, 2019.DOI: 10.1002/admt.201900880.
doi: 10.1002/admt.201900880
[38] YANG Z, ZHAI Z, SONG Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics[J]. Advanced Materials, 2020.DOI:10.1002/adma.201907495.
doi: 10.1002/adma.201907495
[39] LI T, WANG X, JIANG S, et al. Study on electromechanical property of polypyrrole-coated strain sensors based on polyurethane and its hybrid covered yarns[J]. Sensors and Actuators A: Physical, 2020.DOI:10.1016/j.sna.2020.111958.
doi: 10.1016/j.sna.2020.111958
[40] PATTANARAT K, PETCHSANG N, OSATCHAN T, et al. Wash-durable conductive yarn with ethylene glycol-treated PEDOT:PSS for wearable electric heaters[J]. ACS Applied Materials & Interfaces, 2021, 40:48953-48060.
[41] HWANG B, LUND A, TAIN Y, et al. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS[J]. ACS Applied Materials Interfaces, 2020, 12: 27537-27544.
doi: 10.1021/acsami.0c04316
[42] 刘连梅, 赵健伟, 陈超. 聚苯胺-石墨烯/聚酰亚胺复合导电纱的制备以及超电容特性[J]. 复合材料学报, 2020, 37(4): 786-793.
LIU Lianmei, ZHAO Jianwei, CHEN Chao. Preparation and supercapacitance characteristics of polyaniline-graphene/polyimide composite conductive yarn[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 786-793.
[43] ZENG Z, HAO B, LI D, et al. Large-scale production of weavable, dyeable and durable spandex/CTN/cotton core-sheath yarn for wearable strain sensors[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106520.
doi: 10.1016/j.compositesa.2021.106520
[44] DING X C, ZHONG W B, JIANG H Q, et al. Highly accurate wearable piezoresistive sensor without tension disturbance based on weaved conductive yarn[J]. ACS Applied Materials & Interfaces, 2020. DOI:10.1021/acsami.0c07928.
doi: 10.1021/acsami.0c07928
[45] MA Y, WANG Q, LIANG X, et al. Wearable supercapacitors based on conductive cotton yarns[J] Journal of Materials Science, 2018, 53: 14586-14597.
doi: 10.1007/s10853-018-2655-z
[46] YANG M, PAN J, LUO L, et al. CNT/cotton composite yarn for electrothermochromic textiles[J]. Smart Materials and Structures, 2019. DOI: 10.1088/1361-665X/ab21ef.
doi: 10.1088/1361-665X/ab21ef
[47] YANG M, FU C, XIA Z, et al. Conductive and durable CNT-cotton ring spun yarns[J]. Cellulose, 2018, 25:4239-4249.
doi: 10.1007/s10570-018-1839-7
[48] XUE L, FAN W, YU Y, et al. A novel strategy to fabricate core-sheath structure piezoelectric yarn for wearable energy harvesters[J]. Advanced Fiber Materials, 2021, 3: 239-250.
doi: 10.1007/s42765-021-00081-z
[49] PENG H K, WU M M, WANG Y T, et al. Enhancing piezoelectricity of poly(vinylidene fluoride) nano-wrapped yarns with an innovative yarn electrospinning technique[J]. Polymer International, 2021, 70: 851-859.
doi: 10.1002/pi.v70.6
[50] BUSOLO T, SZEWCZYK P K, NAIR M, et al. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications[J]. ACS Applied Materials & Interfaces, 2021, 13: 16876-16886.
[51] ZHANG D W, YANG W F, GONG W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals[J]. Advanced Materials, 2021. DOI:10.1002/adma.202100782.
doi: 10.1002/adma.202100782
[1] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[2] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[3] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[4] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[5] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[6] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[7] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[8] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[9] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[10] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[11] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[12] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[13] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[14] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[15] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!